File: quantization_torch_package_models.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (33 lines) | stat: -rw-r--r-- 951 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# mypy: ignore-errors

import math

import torch
import torch.nn as nn


class LinearReluFunctionalChild(nn.Module):
    def __init__(self, N):
        super().__init__()
        self.w1 = nn.Parameter(torch.empty(N, N))
        self.b1 = nn.Parameter(torch.zeros(N))
        torch.nn.init.kaiming_uniform_(self.w1, a=math.sqrt(5))

    def forward(self, x):
        x = torch.nn.functional.linear(x, self.w1, self.b1)
        x = torch.nn.functional.relu(x)
        return x

class LinearReluFunctional(nn.Module):
    def __init__(self, N):
        super().__init__()
        self.child = LinearReluFunctionalChild(N)
        self.w1 = nn.Parameter(torch.empty(N, N))
        self.b1 = nn.Parameter(torch.zeros(N))
        torch.nn.init.kaiming_uniform_(self.w1, a=math.sqrt(5))

    def forward(self, x):
        x = self.child(x)
        x = torch.nn.functional.linear(x, self.w1, self.b1)
        x = torch.nn.functional.relu(x)
        return x