1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
# mypy: allow-untyped-defs
# In some cases, these basic types are shadowed by corresponding
# top-level values. The underscore variants let us refer to these
# types. See https://github.com/python/mypy/issues/4146 for why these
# workarounds is necessary
from builtins import ( # noqa: F401
bool as _bool,
bytes as _bytes,
complex as _complex,
float as _float,
int as _int,
str as _str,
)
from typing import Any, Dict, List, Sequence, Tuple, TYPE_CHECKING, Union
from typing_extensions import TypeAlias
# `as` imports have better static analysis support than assignment `ExposedType: TypeAlias = HiddenType`
from torch import ( # noqa: F401
device as _device,
DispatchKey as DispatchKey,
dtype as _dtype,
layout as _layout,
qscheme as _qscheme,
Size as Size,
SymBool as SymBool,
SymFloat as SymFloat,
SymInt as SymInt,
Tensor as Tensor,
)
if TYPE_CHECKING:
from torch.autograd.graph import GradientEdge
__all__ = ["Number", "Device", "Storage"]
# Convenience aliases for common composite types that we need
# to talk about in PyTorch
_TensorOrTensors: TypeAlias = Union[Tensor, Sequence[Tensor]] # noqa: PYI047
_TensorOrTensorsOrGradEdge: TypeAlias = Union[ # noqa: PYI047
Tensor,
Sequence[Tensor],
"GradientEdge",
Sequence["GradientEdge"],
]
_size: TypeAlias = Union[Size, List[int], Tuple[int, ...]] # noqa: PYI042,PYI047
_symsize: TypeAlias = Union[Size, Sequence[Union[int, SymInt]]] # noqa: PYI042,PYI047
_dispatchkey: TypeAlias = Union[str, DispatchKey] # noqa: PYI042,PYI047
# int or SymInt
IntLikeType: TypeAlias = Union[int, SymInt]
# float or SymFloat
FloatLikeType: TypeAlias = Union[float, SymFloat]
# bool or SymBool
BoolLikeType: TypeAlias = Union[bool, SymBool]
py_sym_types = (SymInt, SymFloat, SymBool)
PySymType: TypeAlias = Union[SymInt, SymFloat, SymBool]
# Meta-type for "numeric" things; matches our docs
Number: TypeAlias = Union[int, float, bool]
# Meta-type for "device-like" things. Not to be confused with 'device' (a
# literal device object). This nomenclature is consistent with PythonArgParser.
# None means use the default device (typically CPU)
Device: TypeAlias = Union[_device, str, int, None]
# Storage protocol implemented by ${Type}StorageBase classes
class Storage:
_cdata: int
device: _device
dtype: _dtype
_torch_load_uninitialized: bool
def __deepcopy__(self, memo: Dict[int, Any]) -> "Storage":
raise NotImplementedError
def _new_shared(self, size: int) -> "Storage":
raise NotImplementedError
def _write_file(
self,
f: Any,
is_real_file: bool,
save_size: bool,
element_size: int,
) -> None:
raise NotImplementedError
def element_size(self) -> int:
raise NotImplementedError
def is_shared(self) -> bool:
raise NotImplementedError
def share_memory_(self) -> "Storage":
raise NotImplementedError
def nbytes(self) -> int:
raise NotImplementedError
def cpu(self) -> "Storage":
raise NotImplementedError
def data_ptr(self) -> int:
raise NotImplementedError
def from_file(
self,
filename: str,
shared: bool = False,
nbytes: int = 0,
) -> "Storage":
raise NotImplementedError
def _new_with_file(
self,
f: Any,
element_size: int,
) -> "Storage":
raise NotImplementedError
|