File: _content_store.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (238 lines) | stat: -rw-r--r-- 9,077 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# mypy: allow-untyped-defs
# This module provides a FAST (on GPU) content addressable store for storages
# (and tensors on top of them) with VERY WEAK portability guarantees (e.g.,
# don't expect CPU/CUDA to address to the same hash, don't expect it to be
# portable across devices) that is NOT cryptographically secure.  In return,
# we are able to hash 40G of tensor data on GPU in less than a second,
# compared to running SHA-1 in CPU which would a minute or so.  The primary
# use case is for efficiently snapshotting intermediate tensor data for
# offline debugging, but it's been put in this module in case you think of
# another use case for it.  The hash function could be replaced with a
# straight reimplementation of SHA-1, which would give us much stronger
# portability guarantees.
#
# WARNING: THERE IS NO BC/FC GUARANTEE FOR THIS FORMAT!  If you need to format
# shift the result, consider packing it into a single torch.save object
# with traditional view sharing.
#
# Because of the weak portability guarantees, you can only write to the
# content store from a single process; we don't provide any capability
# of "reopening" a content store to add more things to it.  But we don't
# assume that you can keep all of the tensors you want to add to the store
# in memory at once, because you probably can't!  Nor do we assume that
# you know a priori whether or not two storages can be deduplicated or not.
#
# Note: only storages are content-addressed; tensors are name addressed
#
# Note: our padding strategy means that [1, 0] and [1] int16 tensors would
# map to the same (padded) storage.  We think this will be immaterial for most
# users.

import ctypes
import functools
import hashlib
import os.path
import struct
from collections import defaultdict
from typing import Dict, Optional, Set

import torch
import torch._prims as prims
import torch._utils
import torch.nn.functional as F
from torch._C import default_generator
from torch.multiprocessing.reductions import StorageWeakRef


def lazy_compile(**compile_kwargs):
    """Lazily wrap a function with torch.compile on the first call

    This avoids eagerly importing dynamo.
    """

    def decorate_fn(fn):
        @functools.wraps(fn)
        def compile_hook(*args, **kwargs):
            compiled_fn = torch.compile(fn, **compile_kwargs)
            globals()[fn.__name__] = functools.wraps(fn)(compiled_fn)
            return compiled_fn(*args, **kwargs)

        return compile_hook

    return decorate_fn


# Use of torch.compile is mandatory for (1) good memory usage
# and (2) xor_sum implementation.  This is our first instance of
# using PT2 to implement a kernel in PyTorch; if we get AOT capabilities
# it would be good to apply it here.
@lazy_compile(dynamic=True)
def hash_storage_kernel(x):
    # The randint calls are carefully written to hit things we
    # have lowerings for in inductor.  Lack of unsigned 32-bit integer
    # is a pain.
    a = torch.randint(
        -(2**31), 2**31, x.shape, device=x.device, dtype=torch.int32
    ).abs()
    a = ((a % (2**31 - 1)) + 1).long()
    b = (
        torch.randint(-(2**31), 2**31, x.shape, device=x.device, dtype=torch.int32)
        .abs()
        .long()
    )
    # This is a standard shift-multiply universal hash family
    # plus xor sum hash, using Philox to generate random numbers.
    # Our Philox RNG is not deterministic across devices so
    # don't use this for stable hashing.
    #
    # This assumes fixed length so you're also obligated to bucket
    # by the length of tensor as well
    return prims.xor_sum((a * x + b).int(), [0])


# Returns a hex digest of the data in the storage.  Guaranteed to be
# SHA-1 if stable_hash=True, otherwise it will consistent for a single
# process run but not necessarily across processes.
def hash_storage(storage: torch.UntypedStorage, *, stable_hash: bool = False) -> str:
    import torch._dynamo
    from torch._dynamo.utils import is_compile_supported

    device_type = storage.device.type
    if stable_hash or not is_compile_supported(device_type):
        cpu_storage = storage.cpu()
        # TODO: make storage support buffer protocol so this isn't
        # necessary
        buf = (ctypes.c_byte * cpu_storage.nbytes()).from_address(
            cpu_storage.data_ptr()
        )
        sha1 = hashlib.sha1()
        sha1.update(buf)
        return sha1.hexdigest()

    # TODO: factor this into a random utility
    if device_type == "cpu":
        generator = default_generator
    elif device_type == "cuda":
        import torch.cuda

        generator = torch.cuda.default_generators[storage.device.index]
    else:
        raise AssertionError(f"unhandled device type {device_type}")
    state = generator.get_state()
    try:
        generator.manual_seed(0)
        x = torch.empty(0, dtype=torch.uint8, device=storage.device).set_(storage)  # type: ignore[call-overload]
        # The dtype-casting view cannot be compiled, and so the
        # padding/reshaping also needs to be done externally even
        # though it could be profitably fused
        pad = -x.numel() % 4
        if pad > 0:
            x = F.pad(x, (0, pad), "constant", 0)
        x = x.view(torch.int32)
        # We run the 32-bit hash five times with differing parameters to
        # reduce chance of collision
        ITER = 5
        cs = [hash_storage_kernel(x).item() for _ in range(ITER)]
        return struct.pack(">" + "i" * ITER, *cs).hex()
    finally:
        generator.set_state(state)


class ContentStoreWriter:
    # Structure:
    #   storages/
    #     00/
    #       0000..00
    #   tensors/
    #     name
    def __init__(self, loc: str, stable_hash: bool = False) -> None:
        self.loc: str = loc
        self.seen_storage_hashes: Set[str] = set()
        self.stable_hash = stable_hash

    # TODO: offer some sort of non-blocking API to speed things up
    def write_storage(self, storage: torch.UntypedStorage) -> str:
        h = hash_storage(storage, stable_hash=self.stable_hash)
        if h in self.seen_storage_hashes:
            return h
        # TODO: consider not using torch.save for this; we don't actually
        # need any metadata for the storage
        subfolder = os.path.join(self.loc, "storages")
        os.makedirs(subfolder, exist_ok=True)
        target = os.path.join(subfolder, h)
        if os.path.exists(target):
            return h
        torch.save(storage, target)
        self.seen_storage_hashes.add(h)
        return h

    def compute_tensor_metadata(self, t: torch.Tensor, h=None):
        if h is None:
            h = hash_storage(t.untyped_storage(), stable_hash=self.stable_hash)
        return (
            t.dtype,
            h,
            t.storage_offset(),
            tuple(t.shape),
            t.stride(),
            torch._utils.get_tensor_metadata(t),
        )

    def write_tensor(self, name: str, t: torch.Tensor) -> None:
        storage = t.untyped_storage()
        h = self.write_storage(storage)
        # TODO: Support more advanced snapshotting of requires_grad/grad/etc
        d, f = os.path.split(name)
        payload = self.compute_tensor_metadata(t, h=h)
        subfolder = os.path.join(self.loc, "tensors", d)
        os.makedirs(subfolder, exist_ok=True)
        torch.save(payload, os.path.join(subfolder, f))


class ContentStoreReader:
    def __init__(self, loc: str, *, cache=True) -> None:
        self.loc = loc
        self.storage_cache: Optional[
            Dict[Optional[torch.device], Dict[str, StorageWeakRef]]
        ] = None
        if cache:
            self.storage_cache = defaultdict(dict)

    def read_storage(self, h: str, *, device=None) -> torch.UntypedStorage:
        if device is not None:
            device = torch.device(device)
        ws = (
            self.storage_cache[device].get(h)
            if self.storage_cache is not None
            else None
        )
        s: Optional[torch.UntypedStorage]
        if ws is not None:
            s = torch.UntypedStorage._new_with_weak_ptr(ws.cdata)
            if s is not None:
                return s
        s = torch.load(
            os.path.join(self.loc, "storages", h),
            weights_only=True,
            map_location=device,
        )._untyped_storage
        assert s is not None
        if self.storage_cache is not None:
            self.storage_cache[device][h] = StorageWeakRef(s)
        return s

    def read_tensor_metadata(self, name: str):
        fn = os.path.join(self.loc, "tensors", name)
        if not os.path.exists(fn):
            raise FileNotFoundError(fn)
        return torch.load(fn, weights_only=True)

    def read_tensor(self, name: str, *, device=None) -> torch.Tensor:
        dtype, h, storage_offset, size, stride, metadata = self.read_tensor_metadata(
            name
        )
        storage = self.read_storage(h, device=device)
        t = torch.tensor([], dtype=dtype, device=storage.device)
        t.set_(storage, storage_offset, size, stride)
        torch._utils.set_tensor_metadata(t, metadata)
        return t