File: _exposed_in.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (20 lines) | stat: -rw-r--r-- 693 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from typing import Callable, TypeVar


F = TypeVar("F")


# Allows one to expose an API in a private submodule publicly as per the definition
# in PyTorch's public api policy.
#
# It is a temporary solution while we figure out if it should be the long-term solution
# or if we should amend PyTorch's public api policy. The concern is that this approach
# may not be very robust because it's not clear what __module__ is used for.
# However, both numpy and jax overwrite the __module__ attribute of their APIs
# without problem, so it seems fine.
def exposed_in(module: str) -> Callable[[F], F]:
    def wrapper(fn: F) -> F:
        fn.__module__ = module
        return fn

    return wrapper