File: _import_utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (43 lines) | stat: -rw-r--r-- 1,267 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# mypy: allow-untyped-defs
import functools
import importlib.util

import torch


def _check_module_exists(name: str) -> bool:
    r"""Returns if a top-level module with :attr:`name` exists *without**
    importing it. This is generally safer than try-catch block around a
    `import X`. It avoids third party libraries breaking assumptions of some of
    our tests, e.g., setting multiprocessing start method when imported
    (see librosa/#747, torchvision/#544).
    """
    try:
        spec = importlib.util.find_spec(name)
        return spec is not None
    except ImportError:
        return False


@functools.lru_cache
def dill_available():
    return (
        _check_module_exists("dill")
        # dill fails to import under torchdeploy
        and not torch._running_with_deploy()
    )


@functools.lru_cache
def import_dill():
    if not dill_available():
        return None

    import dill

    # XXX: By default, dill writes the Pickler dispatch table to inject its
    # own logic there. This globally affects the behavior of the standard library
    # pickler for any user who transitively depends on this module!
    # Undo this extension to avoid altering the behavior of the pickler globally.
    dill.extend(use_dill=False)
    return dill