1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
# mypy: allow-untyped-defs
import mpmath.libmp as mlib # type: ignore[import-untyped]
import sympy
from sympy import Expr
from sympy.core.decorators import _sympifyit
from sympy.core.expr import AtomicExpr
from sympy.core.numbers import Number
from sympy.core.parameters import global_parameters
from sympy.core.singleton import S, Singleton
class IntInfinity(Number, metaclass=Singleton):
r"""Positive integer infinite quantity.
Integer infinity is a value in an extended integers which
is greater than all other integers. We distinguish it from
sympy's existing notion of infinity in that it reports that
it is_integer.
Infinity is a singleton, and can be accessed by ``S.IntInfinity``,
or can be imported as ``int_oo``.
"""
# NB: We can't actually mark this as infinite, as integer and infinite are
# inconsistent assumptions in sympy. We also report that we are complex,
# different from sympy.oo
is_integer = True
is_commutative = True
is_number = True
is_extended_real = True
is_comparable = True
is_extended_positive = True
is_prime = False
# Ensure we get dispatched to before plain numbers
_op_priority = 100.0
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _sympystr(self, printer):
return "int_oo"
def _eval_subs(self, old, new):
if self == old:
return new
# We could do these, not sure about it
"""
def _eval_evalf(self, prec=None):
return Float('inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
"""
@_sympifyit("other", NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (S.Infinity, S.NegativeInfinity):
return other
if other in (S.NegativeIntInfinity, S.NaN):
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit("other", NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity:
return S.NegativeInfinity
if other is S.NegativeInfinity:
return S.Infinity
if other in (S.IntInfinity, S.NaN):
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit("other", NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit("other", NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.NegativeIntInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit("other", NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (
S.Infinity,
S.IntInfinity,
S.NegativeInfinity,
S.NegativeIntInfinity,
S.NaN,
):
return S.NaN
if other.is_extended_nonnegative:
return S.Infinity # truediv produces float
return S.NegativeInfinity # truediv produces float
return Number.__truediv__(self, other)
def __abs__(self):
return S.IntInfinity
def __neg__(self):
return S.NegativeIntInfinity
def _eval_power(self, expt):
if expt.is_extended_positive:
return S.IntInfinity
if expt.is_extended_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_extended_real is False and expt.is_number:
from sympy.functions.elementary.complexes import re
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self ** expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.IntInfinity
def __ne__(self, other):
return other is not S.IntInfinity
def __gt__(self, other):
if other is S.Infinity:
return sympy.false # sympy.oo > int_oo
elif other is S.IntInfinity:
return sympy.false # consistency with sympy.oo
else:
return sympy.true
def __ge__(self, other):
if other is S.Infinity:
return sympy.false # sympy.oo > int_oo
elif other is S.IntInfinity:
return sympy.true # consistency with sympy.oo
else:
return sympy.true
def __lt__(self, other):
if other is S.Infinity:
return sympy.true # sympy.oo > int_oo
elif other is S.IntInfinity:
return sympy.false # consistency with sympy.oo
else:
return sympy.false
def __le__(self, other):
if other is S.Infinity:
return sympy.true # sympy.oo > int_oo
elif other is S.IntInfinity:
return sympy.true # consistency with sympy.oo
else:
return sympy.false
@_sympifyit("other", NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
int_oo = S.IntInfinity
class NegativeIntInfinity(Number, metaclass=Singleton):
"""Negative integer infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
IntInfinity
"""
# Ensure we get dispatched to before plain numbers
_op_priority = 100.0
is_integer = True
is_extended_real = True
is_commutative = True
is_comparable = True
is_extended_negative = True
is_number = True
is_prime = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _eval_subs(self, old, new):
if self == old:
return new
def _sympystr(self, printer):
return "-int_oo"
"""
def _eval_evalf(self, prec=None):
return Float('-inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
"""
@_sympifyit("other", NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity:
return S.Infinity
if other in (S.IntInfinity, S.NaN):
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit("other", NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NegativeInfinity:
return S.Infinity
if other in (S.NegativeIntInfinity, S.NaN):
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit("other", NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit("other", NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.IntInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit("other", NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (
S.Infinity,
S.IntInfinity,
S.NegativeInfinity,
S.NegativeIntInfinity,
S.NaN,
):
return S.NaN
if other.is_extended_nonnegative:
return self
return S.Infinity # truediv returns float
return Number.__truediv__(self, other)
def __abs__(self):
return S.IntInfinity
def __neg__(self):
return S.IntInfinity
def _eval_power(self, expt):
if expt.is_number:
if expt in (
S.NaN,
S.Infinity,
S.NegativeInfinity,
S.IntInfinity,
S.NegativeIntInfinity,
):
return S.NaN
if isinstance(expt, sympy.Integer) and expt.is_extended_positive:
if expt.is_odd:
return S.NegativeIntInfinity
else:
return S.IntInfinity
inf_part = S.IntInfinity**expt
s_part = S.NegativeOne**expt
if inf_part == 0 and s_part.is_finite:
return inf_part
if (
inf_part is S.ComplexInfinity
and s_part.is_finite
and not s_part.is_zero
):
return S.ComplexInfinity
return s_part * inf_part
def _as_mpf_val(self, prec):
return mlib.fninf
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.NegativeIntInfinity
def __ne__(self, other):
return other is not S.NegativeIntInfinity
def __gt__(self, other):
if other is S.NegativeInfinity:
return sympy.true # -sympy.oo < -int_oo
elif other is S.NegativeIntInfinity:
return sympy.false # consistency with sympy.oo
else:
return sympy.false
def __ge__(self, other):
if other is S.NegativeInfinity:
return sympy.true # -sympy.oo < -int_oo
elif other is S.NegativeIntInfinity:
return sympy.true # consistency with sympy.oo
else:
return sympy.false
def __lt__(self, other):
if other is S.NegativeInfinity:
return sympy.false # -sympy.oo < -int_oo
elif other is S.NegativeIntInfinity:
return sympy.false # consistency with sympy.oo
else:
return sympy.true
def __le__(self, other):
if other is S.NegativeInfinity:
return sympy.false # -sympy.oo < -int_oo
elif other is S.NegativeIntInfinity:
return sympy.true # consistency with sympy.oo
else:
return sympy.true
@_sympifyit("other", NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
def as_powers_dict(self):
return {S.NegativeOne: 1, S.IntInfinity: 1}
|