File: printers.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (459 lines) | stat: -rw-r--r-- 18,526 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import sys
from typing import Optional

import sympy
from sympy.printing.precedence import PRECEDENCE, precedence
from sympy.printing.str import StrPrinter


INDEX_TYPE = "int64_t"


# This printer contains rules that are supposed to be generic for both C/C++ and
# Python
class ExprPrinter(StrPrinter):
    # override this so that _print_FloorDiv is used
    printmethod = "_torch_sympystr"

    def _print_Mul(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, "*", precedence(expr))

    def _print_Add(self, expr: sympy.Expr, order: Optional[str] = None) -> str:
        return self.stringify(expr.args, " + ", precedence(expr))

    def _print_Relational(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, f" {expr.rel_op} ", precedence(expr))

    def _print_BitwiseFn_bitwise_and(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"])

    def _print_BitwiseFn_bitwise_or(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])

    # NB: this is OK to put here, because Mod is only defined for positive
    # numbers, and so across C/Python its behavior is consistent
    def _print_Mod(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " % ", PRECEDENCE["Atom"] - 0.5)

    def _print_FloatTrueDiv(self, expr: sympy.Expr) -> str:
        s = self.stringify(expr.args, " / ", PRECEDENCE["Atom"] - 0.5)
        return f"({s})"

    def _print_CleanDiv(self, expr: sympy.Expr) -> str:
        return self._print_FloorDiv(expr)

    def _print_Identity(self, expr: sympy.Expr) -> str:
        return self._print(expr.args[0])

    # This must be implemented because sympy will collect x * x into Pow(x, 2), without
    # any explicit intervention.  We print it just like x * x, notably, we
    # never generate sympy.Pow with floats.
    #
    # NB: this pow by natural, you should never have used builtin sympy.pow
    # for FloatPow, and a symbolic exponent should be PowByNatural.  These
    # means exp is guaranteed to be integer.
    def _print_Pow(self, expr: sympy.Expr) -> str:
        base, exp = expr.args
        assert exp == int(exp), exp
        exp = int(exp)
        assert exp >= 0
        if exp > 0:
            return self.stringify([base] * exp, "*", PRECEDENCE["Mul"])
        return "1"

    # Explicit NotImplemented functions are to prevent default sympy printing
    # behavior, which will just barf out ToFloat(...) to your IR.  The error
    # message is better here because it tells you which printer class it needs
    # to go in.

    def _print_ToFloat(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_ToFloat not implemented for {type(self)}")

    def _print_Infinity(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_Infinity not implemented for {type(self)}")

    def _print_NegativeInfinity(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(
            f"_print_NegativeInfinity not implemented for {type(self)}"
        )

    def _print_FloorDiv(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_FloorDiv not implemented for {type(self)}")

    def _print_PythonMod(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_PythonMod not implemented for {type(self)}")

    def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_IntTrueDiv not implemented for {type(self)}")

    def _print_PowByNatural(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(
            f"_print_PowByNatural not implemented for {type(self)}"
        )

    def _print_FloatPow(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_FloatPow not implemented for {type(self)}")

    def _print_TruncToInt(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_TruncToInt not implemented for {type(self)}")

    def _print_RoundToInt(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(f"_print_RoundToInt not implemented for {type(self)}")

    def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(
            f"_print_RoundDecimal not implemented for {type(self)}"
        )

    # NB: Some float operations are INTENTIONALLY not implemented for
    # printers.  You can implement them as a quick unblock, but it is better
    # to ask yourself why we haven't done this computation in the Tensor
    # universe instead

    def _print_TruncToFloat(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(
            f"_print_TruncToFloat not implemented for {type(self)}"
        )


class PythonPrinter(ExprPrinter):
    def _print_ToFloat(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"float({self._print(expr.args[0])})"

    def _print_And(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " and ", precedence(expr))

    def _print_Or(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " or ", precedence(expr))

    def _print_ModularIndexing(self, expr: sympy.Expr) -> str:
        x, div, mod = (
            self.parenthesize(arg, PRECEDENCE["Atom"] - 0.5) for arg in expr.args
        )
        if div != "1":
            x = f"({x} // {div})"
        return f"({x} % {mod})"

    def _print_Infinity(self, expr: sympy.Expr) -> str:
        return "math.inf"

    def _print_NegativeInfinity(self, expr: sympy.Expr) -> str:
        return "-math.inf"

    # WARNING: this is dangerous for Triton, which has C-style modulus
    def _print_PythonMod(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " % ", PRECEDENCE["Atom"] - 0.5)

    # WARNING: this is dangerous for Triton, which has C-style modulus
    def _print_FloorDiv(self, expr: sympy.Expr) -> str:
        x, div = (self.parenthesize(arg, PRECEDENCE["Atom"] - 0.5) for arg in expr.args)
        return f"{x} // {div}"

    # WARNING: this is dangerous for Triton, when lhs, rhs > 2**53, Python
    # does a special algorithm
    def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " / ", PRECEDENCE["Atom"] - 0.5)

    def _helper_sqrt(self, expr: sympy.Expr) -> str:
        return f"math.sqrt({self._print(expr)})"

    def _print_OpaqueUnaryFn_sqrt(self, expr: sympy.Expr) -> str:
        return self._helper_sqrt(expr.args[0])

    def _print_FloatPow(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " ** ", PRECEDENCE["Pow"])

    # TODO: Not sure this works with Triton, even when base/exp are integral
    def _print_PowByNatural(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " ** ", PRECEDENCE["Pow"])

    def _print_floor(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.floor({self._print(expr.args[0])})"

    def _print_FloorToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.floor({self._print(expr.args[0])})"

    def _print_TruncToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        # This also could have been int(), they'll do the same thing for float
        return f"math.trunc({self._print(expr.args[0])})"

    def _print_ceiling(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.ceil({self._print(expr.args[0])})"

    def _print_CeilToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.ceil({self._print(expr.args[0])})"

    def _print_Abs(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"abs({self._print(expr.args[0])})"

    # NB: It's expected that we've made explicit any promotion in the sympy
    # expression, so it doesn't matter that Python max/min doesn't perform
    # promotion
    def _print_Max(self, expr: sympy.Expr) -> str:
        assert len(expr.args) >= 2
        return f"max({', '.join(map(self._print, expr.args))})"

    def _print_Min(self, expr: sympy.Expr) -> str:
        assert len(expr.args) >= 2
        return f"min({', '.join(map(self._print, expr.args))})"

    def _print_OpaqueUnaryFn_cos(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.cos({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_cosh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.cosh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_acos(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.acos({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sin(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.sin({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sinh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.sinh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_asin(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.asin({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tan(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.tan({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tanh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.tanh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_atan(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"math.atan({self._print(expr.args[0])})"

    def _print_RoundToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"round({self._print(expr.args[0])})"

    def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 2
        number, ndigits = expr.args
        assert isinstance(ndigits, sympy.Integer)
        return f"round({self._print(number)}, {ndigits})"


class CppPrinter(ExprPrinter):
    def _print_Integer(self, expr: sympy.Expr) -> str:
        return (
            f"{int(expr)}LL" if sys.platform in ["darwin", "win32"] else f"{int(expr)}L"
        )

    def _print_Where(self, expr: sympy.Expr) -> str:
        c, p, q = (
            self.parenthesize(arg, PRECEDENCE["Atom"] - 0.5) for arg in expr.args
        )
        return f"{c} ? {p} : {q}"

    def _print_ModularIndexing(self, expr: sympy.Expr) -> str:
        x, div, mod = expr.args
        x = self.doprint(x)
        if div != 1:
            div = self.doprint(div)
            if expr.is_integer:
                x = f"c10::div_floor_integer(static_cast<int64_t>({x}), static_cast<int64_t>({div}))"
            else:
                x = f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
        mod = self.doprint(mod)
        return f"(static_cast<{INDEX_TYPE}>({x}) % static_cast<{INDEX_TYPE}>({mod}))"

    def _print_FloorDiv(self, expr: sympy.Expr) -> str:
        x, div = expr.args
        x = self.doprint(x)
        div = self.doprint(div)
        if expr.is_integer:
            return f"c10::div_floor_integer(static_cast<int64_t>({x}), static_cast<int64_t>({div}))"
        return f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"

    def _print_floor(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        r = f"std::floor({self._print(expr.args[0])})"
        return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r

    def _print_FloorToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        r = f"std::floor({self._print(expr.args[0])})"
        return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r

    def _print_TruncToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        r = f"std::trunc({self._print(expr.args[0])})"
        return f"static_cast<{INDEX_TYPE}>({r})"

    def _print_TruncToFloat(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::trunc({self._print(expr.args[0])})"

    def _print_ToFloat(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"static_cast<double>({self._print(expr.args[0])})"

    # TODO: This is wrong if one of the inputs is negative.  This is hard to
    # tickle though, as the inputs are typically positive (and if we can prove
    # they are positive, we will have used Mod instead, for which this codegen
    # is right).
    def _print_PythonMod(self, expr: sympy.Expr) -> str:
        return self.stringify(expr.args, " % ", PRECEDENCE["Atom"] - 0.5)

    def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
        lhs, rhs = expr.args
        # TODO: This is only accurate up to 2**53
        return f"static_cast<double>({self._print(lhs)}) / static_cast<double>({self._print(rhs)})"

    # TODO: PowByNatural: we need to implement our own int-int pow.  Do NOT
    # use std::pow, that operates on floats
    def _print_PowByNatural(self, expr: sympy.Expr) -> str:
        raise NotImplementedError(
            f"_print_PowByNatural not implemented for {type(self)}"
        )

    def _print_FloatPow(self, expr: sympy.Expr) -> str:
        base, exp = expr.args
        return f"std::pow({self._print(base)}, {self._print(exp)})"

    def _print_Pow(self, expr: sympy.Expr) -> str:
        # Uses float constants to perform FP div
        base, exp = expr.args

        if exp == 0.5 or exp == -0.5:
            base = self._print(base)
            return f"std::sqrt({base})" if exp == 0.5 else f"1.0/std::sqrt({base})"
        if exp.is_integer:
            exp = int(exp)
            if exp > 0:
                r = self.stringify([base] * exp, "*", PRECEDENCE["Mul"])
            elif exp < -1:
                r = (
                    "1.0/("
                    + self.stringify([base] * abs(exp), "*", PRECEDENCE["Mul"])
                    + ")"
                )
            elif exp == -1:
                r = "1.0/" + self._print(base)
            else:  # exp == 0
                r = "1.0"

            return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
        else:
            # TODO: float vs double
            return f"std::pow({base}, {float(exp)})"

    def _print_Rational(self, expr: sympy.Expr) -> str:
        # Uses float constants to perform FP div
        if expr.q == 1:
            r = f"{expr.p}"
        else:
            r = f"{expr.p}.0/{expr.q}.0"
        return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r

    def _print_ceiling(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        r = f"std::ceil({self._print(expr.args[0])})"
        return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r

    def _print_CeilToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        r = f"std::ceil({self._print(expr.args[0])})"
        return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r

    def _print_Min(self, expr: sympy.Expr) -> str:
        args = [self._print(a) for a in expr.args]
        if len(args) == 2:
            return f"std::min(static_cast<{INDEX_TYPE}>({args[0]}), static_cast<{INDEX_TYPE}>({args[1]}))"
        else:
            # Initializer list overload
            il = "{" + ", ".join(args) + "}"
            return f"std::min({il})"

    def _print_Max(self, expr: sympy.Expr) -> str:
        args = [self._print(a) for a in expr.args]
        if len(args) == 2:
            return f"std::max(static_cast<{INDEX_TYPE}>({args[0]}), static_cast<{INDEX_TYPE}>({args[1]}))"
        else:
            # Initializer list overload
            il = "{" + ", ".join(args) + "}"
            return f"std::max({il})"

    def _print_Abs(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::abs({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_cos(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::cos({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_cosh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::cosh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_acos(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::acos({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sin(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::sin({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sinh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::sinh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_asin(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::asin({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tan(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::tan({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tanh(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::tanh({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_atan(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        return f"std::atan({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sqrt(self, expr: sympy.Expr) -> str:
        return f"std::sqrt({self._print(expr.args[0])})"

    def _print_RoundToInt(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 1
        # TODO: dispatch to llrint depending on index type
        return f"std::lrint({self._print(expr.args[0])})"

    def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
        assert len(expr.args) == 2
        number, ndigits = expr.args
        if number.is_integer:
            # ndigits < 0 should have been filtered by the sympy function
            assert ndigits < 0
            raise ValueError(
                f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
            )
        number_str = self.parenthesize(number, PRECEDENCE["Mul"])
        return f"static_cast<double>(std::nearbyint(1e{ndigits} * {number_str}) * 1e{-ndigits})"

    def _print_BooleanTrue(self, expr: sympy.Expr) -> str:
        return "true"

    def _print_BooleanFalse(self, expr: sympy.Expr) -> str:
        return "false"