1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
# mypy: allow-untyped-defs
import math
import operator
from typing import Union
import sympy
import torch
from torch.utils._sympy.functions import (
_keep_float,
BitwiseFn_bitwise_and,
BitwiseFn_bitwise_or,
FloatPow,
FloatTrueDiv,
FloorDiv,
IntTrueDiv,
Max,
Min,
Mod,
OpaqueUnaryFn_exp,
OpaqueUnaryFn_log,
OpaqueUnaryFn_log2,
OpaqueUnaryFn_sqrt,
PowByNatural,
RoundDecimal,
RoundToInt,
ToFloat,
TruncToInt,
)
# The sympy interpretation of operators. It will also sometimes work with
# plain int/float, but if you do certain operations you will get out a
# sympy.Basic in the end. If you want the Python/FX traceable interpretation,
# check PythonReferenceAnalysis.
# NB: For magic methods this needs to use normal magic methods
# so that test_magic_methods works
class ReferenceAnalysis:
@staticmethod
def constant(c, dtype):
return sympy.sympify(c)
@staticmethod
def or_(a, b):
return a | b
@staticmethod
def and_(a, b):
return a & b
@staticmethod
def eq(a, b):
if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
return sympy.Eq(a, b)
return a == b
@classmethod
def ne(cls, a, b):
return cls.not_(cls.eq(a, b))
@staticmethod
def lt(a, b):
return a < b
@staticmethod
def gt(a, b):
return a > b
@staticmethod
def le(a, b):
return a <= b
@staticmethod
def ge(a, b):
return a >= b
@staticmethod
def not_(a):
assert not isinstance(a, bool)
return ~a
@staticmethod
def reciprocal(x):
return FloatTrueDiv(1.0, x)
@staticmethod
def square(x):
return PowByNatural(x, 2)
@staticmethod
def trunc_to_int(x, dtype):
return TruncToInt(x)
@staticmethod
def ceil_to_int(x, dtype):
return sympy.ceiling(x)
@staticmethod
def floor_to_int(x, dtype):
return sympy.floor(x)
@staticmethod
def floor(x):
return _keep_float(sympy.floor)(x)
@staticmethod
def ceil(x):
return _keep_float(sympy.ceiling)(x)
@staticmethod
def to_dtype(x, dtype):
if dtype == torch.float64:
return ToFloat(x)
raise NotImplementedError(f"to_dtype {dtype} NYI")
@staticmethod
def mod(x, y):
return Mod(x, y)
@staticmethod
def abs(x):
return abs(x)
@staticmethod
def neg(x):
return -x
@staticmethod
def truediv(a, b):
return FloatTrueDiv(a, b)
@staticmethod
def int_truediv(a, b):
return IntTrueDiv(a, b)
@staticmethod
def floordiv(a, b):
return FloorDiv(a, b)
@staticmethod
def truncdiv(a, b):
raise NotImplementedError("TODO: truncdiv")
@staticmethod
def add(a, b):
return _keep_float(operator.add)(a, b)
@classmethod
def sym_sum(cls, args):
return sympy.Add(*args)
@staticmethod
def mul(a, b):
return _keep_float(operator.mul)(a, b)
@staticmethod
def sub(a, b):
return _keep_float(operator.sub)(a, b)
@staticmethod
def exp(x):
return OpaqueUnaryFn_exp(x)
@staticmethod
def log(x):
return OpaqueUnaryFn_log(x)
@staticmethod
def log2(x):
return OpaqueUnaryFn_log2(x)
@staticmethod
def sqrt(x):
return OpaqueUnaryFn_sqrt(x)
@staticmethod
def pow(a, b):
return _keep_float(FloatPow)(a, b)
@staticmethod
def pow_by_natural(a, b):
return PowByNatural(a, b)
@staticmethod
def minimum(a, b):
return Min(a, b)
@staticmethod
def maximum(a, b):
return Max(a, b)
@staticmethod
def round_to_int(a, dtype):
return RoundToInt(a)
@staticmethod
def round_decimal(a, b):
return RoundDecimal(a, b)
@staticmethod
def bitwise_and(a, b):
return BitwiseFn_bitwise_and(a, b)
@staticmethod
def bitwise_or(a, b):
return BitwiseFn_bitwise_or(a, b)
# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
# Python types and is FX traceable. Inheritance here is purely for code
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
class PythonReferenceAnalysis(ReferenceAnalysis):
@staticmethod
def constant(c, dtype):
if dtype is torch.int64:
return int(c)
elif dtype is torch.double:
return float(c)
elif dtype is torch.bool:
return bool(c)
else:
raise AssertionError(f"unrecognized dtype {dtype}")
@staticmethod
def not_(a):
return torch.sym_not(a)
@classmethod
def sym_sum(cls, args):
if len(args) == 0:
return 0
if len(args) == 1:
return args[0]
acc = cls.add(args[0], args[1])
for i in range(2, len(args)):
acc = cls.add(acc, args[i])
return acc
@staticmethod
def floordiv(a, b):
return a // b
@staticmethod
def mod(x, y):
return x % y
@staticmethod
def truncdiv(a, b):
return a / b
@staticmethod
def to_dtype(x, dtype):
if dtype == torch.float64:
return torch.sym_float(x)
raise NotImplementedError(f"to_dtype {dtype} NYI")
@staticmethod
def exp(x):
raise AssertionError("exp is not valid shape sympy expr")
@staticmethod
def log(x):
raise AssertionError("log is not valid shape sympy expr")
@staticmethod
def log2(x):
return torch._sym_log2(x) # type: ignore[attr-defined]
@staticmethod
def sqrt(x):
return torch._sym_sqrt(x) # type: ignore[attr-defined]
@staticmethod
def minimum(a, b):
return torch.sym_min(a, b)
@staticmethod
def maximum(a, b):
return torch.sym_max(a, b)
@staticmethod
def floor_to_int(x, dtype):
return math.floor(x)
@staticmethod
def ceil_to_int(x, dtype):
return math.ceil(x)
@staticmethod
def floor(x):
return float(math.floor(x))
@staticmethod
def ceil(x):
return float(math.ceil(x))
@staticmethod
def truediv(a, b):
return a / b
@staticmethod
def pow(a, b):
return a**b
@staticmethod
def pow_by_natural(a, b):
# Pray that safe_pow is not needed here lol. In particular, this
# never participates in VR low/high ranges, so overflow should be
# unlikely
return a**b
@staticmethod
def round_to_int(a, dtype):
return round(a)
@staticmethod
def round_decimal(a, b):
return round(a, ndigits=b)
@staticmethod
def bitwise_and(a, b):
return a & b
@staticmethod
def bitwise_or(a, b):
return a | b
# Like PythonReferenceAnalysis, but some export-unfriendly choices of
# operators to make things faster
class OptimizedPythonReferenceAnalysis(PythonReferenceAnalysis):
@staticmethod
def sym_sum(args):
return torch.sym_sum(args)
def _to_dtype(x: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
return torch.ops.prims.convert_element_type.default(x, dtype)
# Suppose we have some int/float arguments. This diagram commutes:
#
# int/float -- PythonReferenceAnalysis.op --> int/float
# | |
# | |
# torch.tensor(..., dtype=torch.int64/torch.float64)
# | |
# V V
# Tensor -- TensorReferenceAnalysis.op --> Tensor
#
# NB: int before and after must be representable in int64 (we will
# insert guards accordingly.)
#
# This is guaranteed to be FX traceable with OpOverloads only.
class TensorReferenceAnalysis:
# NB: This is actually dead, because with Proxy tracing the factory
# function isn't traced correctly. Here for completeness.
@staticmethod
def constant(c, dtype):
d: Union[int, float, bool]
if dtype is torch.int64:
d = int(c)
elif dtype is torch.double:
d = float(c)
elif dtype is torch.bool:
d = bool(c)
else:
raise AssertionError(f"unrecognized dtype {dtype}")
return torch.ops.aten.scalar_tensor.default(d, dtype=dtype)
@staticmethod
def or_(a, b):
return torch.ops.aten.logical_or.default(a, b)
@staticmethod
def and_(a, b):
return torch.ops.aten.logical_and.default(a, b)
@staticmethod
def bitwise_and(a, b):
return torch.ops.aten.bitwise_and(a, b)
@staticmethod
def bitwise_or(a, b):
return torch.ops.aten.bitwise_or(a, b)
@staticmethod
def eq(a, b):
return torch.ops.aten.eq.Tensor(a, b)
@classmethod
def ne(cls, a, b):
return torch.ops.aten.ne.Tensor(a, b)
@staticmethod
def lt(a, b):
return torch.ops.aten.lt.Tensor(a, b)
@staticmethod
def gt(a, b):
return torch.ops.aten.gt.Tensor(a, b)
@staticmethod
def le(a, b):
return torch.ops.aten.le.Tensor(a, b)
@staticmethod
def ge(a, b):
return torch.ops.aten.ge.Tensor(a, b)
@staticmethod
def not_(a):
return torch.ops.aten.logical_not.default(a)
@staticmethod
def reciprocal(x):
return torch.ops.aten.reciprocal.default(x)
@staticmethod
def square(x):
# TODO: maybe composite implicit autograd doesn't work here?
return torch.ops.aten.square.default(x)
@staticmethod
def trunc_to_int(x, dtype):
return _to_dtype(torch.ops.aten.trunc.default(x), dtype)
@staticmethod
def ceil_to_int(x, dtype):
return _to_dtype(torch.ops.aten.ceil.default(x), dtype)
@staticmethod
def floor_to_int(x, dtype):
return _to_dtype(torch.ops.aten.floor.default(x), dtype)
@staticmethod
def floor(x):
return torch.ops.aten.floor.default(x)
@staticmethod
def ceil(x):
return torch.ops.aten.ceil.default(x)
@staticmethod
def to_dtype(x, dtype):
return _to_dtype(x, dtype)
@staticmethod
def mod(x, y):
# TODO: https://github.com/pytorch/pytorch/pull/133654
raise NotImplementedError(
"no C-style modulus operation available from frontend atm"
)
@staticmethod
def abs(x):
return torch.ops.aten.abs.default(x)
@staticmethod
def neg(x):
return torch.ops.aten.neg.default(x)
@staticmethod
def truediv(a, b):
return torch.ops.aten.true_divide.Tensor(a, b)
@staticmethod
def int_truediv(a, b):
raise NotImplementedError(
"Python int truediv difficult to implement in PyTorch atm"
)
# TODO: This is wrong, CPython has a custom implementation of true
# division that results in higher precision when the floats are
# sufficiently large. Short term fix: add a guard here
return torch.ops.aten.true_divide.default(
_to_dtype(a, torch.float64), _to_dtype(b, torch.float64)
)
@staticmethod
def floordiv(a, b):
return torch.ops.aten.div.Tensor_mode(a, b, rounding_mode="floor")
@staticmethod
def truncdiv(a, b):
raise NotImplementedError(
"no C-style truncdiv operation available from frontend atm"
)
@staticmethod
def add(a, b):
return torch.ops.aten.add.Tensor(a, b)
@staticmethod
def mul(a, b):
return torch.ops.aten.mul.Tensor(a, b)
@staticmethod
def sub(a, b):
return torch.ops.aten.sub.Tensor(a, b)
@staticmethod
def exp(x):
return torch.ops.aten.exp.default(x)
@staticmethod
def log(x):
return torch.ops.aten.log.default(x)
@staticmethod
def log2(x):
return torch.ops.aten.log2.default(x)
@staticmethod
def sqrt(x):
return torch.ops.aten.sqrt.default(x)
@staticmethod
def sin(x):
return torch.ops.aten.sin.default(x)
@staticmethod
def cos(x):
return torch.ops.aten.cos.default(x)
@staticmethod
def tanh(x):
return torch.ops.aten.tanh.default(x)
@staticmethod
def sinh(x):
return torch.ops.aten.sinh.default(x)
@staticmethod
def cosh(x):
return torch.ops.aten.cosh.default(x)
@staticmethod
def tan(x):
return torch.ops.aten.tan.default(x)
@staticmethod
def acos(x):
return torch.ops.aten.acos.default(x)
@staticmethod
def atan(x):
return torch.ops.aten.atan.default(x)
@staticmethod
def asin(x):
return torch.ops.aten.asin.default(x)
@staticmethod
def pow(a, b):
return torch.ops.aten.pow.Tensor_Tensor(a, b)
@staticmethod
def pow_by_natural(a, b):
# NB: pow handles int x int fine
return torch.ops.aten.pow.Tensor_Tensor(a, b)
@staticmethod
def minimum(a, b):
return torch.ops.aten.minimum.default(a, b)
@staticmethod
def maximum(a, b):
return torch.ops.aten.maximum.default(a, b)
@staticmethod
def round_to_int(a, dtype):
return torch.ops.aten.round.default(a)
@staticmethod
def round_decimal(a, b):
raise NotImplementedError(
"round decimal doesn't support Tensor second argument atm"
)
# return torch.ops.aten.round.decimals(a, b)
|