File: reference.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (581 lines) | stat: -rw-r--r-- 13,604 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# mypy: allow-untyped-defs
import math
import operator
from typing import Union

import sympy

import torch
from torch.utils._sympy.functions import (
    _keep_float,
    BitwiseFn_bitwise_and,
    BitwiseFn_bitwise_or,
    FloatPow,
    FloatTrueDiv,
    FloorDiv,
    IntTrueDiv,
    Max,
    Min,
    Mod,
    OpaqueUnaryFn_exp,
    OpaqueUnaryFn_log,
    OpaqueUnaryFn_log2,
    OpaqueUnaryFn_sqrt,
    PowByNatural,
    RoundDecimal,
    RoundToInt,
    ToFloat,
    TruncToInt,
)


# The sympy interpretation of operators.  It will also sometimes work with
# plain int/float, but if you do certain operations you will get out a
# sympy.Basic in the end.  If you want the Python/FX traceable interpretation,
# check PythonReferenceAnalysis.
# NB: For magic methods this needs to use normal magic methods
# so that test_magic_methods works
class ReferenceAnalysis:
    @staticmethod
    def constant(c, dtype):
        return sympy.sympify(c)

    @staticmethod
    def or_(a, b):
        return a | b

    @staticmethod
    def and_(a, b):
        return a & b

    @staticmethod
    def eq(a, b):
        if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
            return sympy.Eq(a, b)
        return a == b

    @classmethod
    def ne(cls, a, b):
        return cls.not_(cls.eq(a, b))

    @staticmethod
    def lt(a, b):
        return a < b

    @staticmethod
    def gt(a, b):
        return a > b

    @staticmethod
    def le(a, b):
        return a <= b

    @staticmethod
    def ge(a, b):
        return a >= b

    @staticmethod
    def not_(a):
        assert not isinstance(a, bool)
        return ~a

    @staticmethod
    def reciprocal(x):
        return FloatTrueDiv(1.0, x)

    @staticmethod
    def square(x):
        return PowByNatural(x, 2)

    @staticmethod
    def trunc_to_int(x, dtype):
        return TruncToInt(x)

    @staticmethod
    def ceil_to_int(x, dtype):
        return sympy.ceiling(x)

    @staticmethod
    def floor_to_int(x, dtype):
        return sympy.floor(x)

    @staticmethod
    def floor(x):
        return _keep_float(sympy.floor)(x)

    @staticmethod
    def ceil(x):
        return _keep_float(sympy.ceiling)(x)

    @staticmethod
    def to_dtype(x, dtype):
        if dtype == torch.float64:
            return ToFloat(x)
        raise NotImplementedError(f"to_dtype {dtype} NYI")

    @staticmethod
    def mod(x, y):
        return Mod(x, y)

    @staticmethod
    def abs(x):
        return abs(x)

    @staticmethod
    def neg(x):
        return -x

    @staticmethod
    def truediv(a, b):
        return FloatTrueDiv(a, b)

    @staticmethod
    def int_truediv(a, b):
        return IntTrueDiv(a, b)

    @staticmethod
    def floordiv(a, b):
        return FloorDiv(a, b)

    @staticmethod
    def truncdiv(a, b):
        raise NotImplementedError("TODO: truncdiv")

    @staticmethod
    def add(a, b):
        return _keep_float(operator.add)(a, b)

    @classmethod
    def sym_sum(cls, args):
        return sympy.Add(*args)

    @staticmethod
    def mul(a, b):
        return _keep_float(operator.mul)(a, b)

    @staticmethod
    def sub(a, b):
        return _keep_float(operator.sub)(a, b)

    @staticmethod
    def exp(x):
        return OpaqueUnaryFn_exp(x)

    @staticmethod
    def log(x):
        return OpaqueUnaryFn_log(x)

    @staticmethod
    def log2(x):
        return OpaqueUnaryFn_log2(x)

    @staticmethod
    def sqrt(x):
        return OpaqueUnaryFn_sqrt(x)

    @staticmethod
    def pow(a, b):
        return _keep_float(FloatPow)(a, b)

    @staticmethod
    def pow_by_natural(a, b):
        return PowByNatural(a, b)

    @staticmethod
    def minimum(a, b):
        return Min(a, b)

    @staticmethod
    def maximum(a, b):
        return Max(a, b)

    @staticmethod
    def round_to_int(a, dtype):
        return RoundToInt(a)

    @staticmethod
    def round_decimal(a, b):
        return RoundDecimal(a, b)

    @staticmethod
    def bitwise_and(a, b):
        return BitwiseFn_bitwise_and(a, b)

    @staticmethod
    def bitwise_or(a, b):
        return BitwiseFn_bitwise_or(a, b)


# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
# Python types and is FX traceable.  Inheritance here is purely for code
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
class PythonReferenceAnalysis(ReferenceAnalysis):
    @staticmethod
    def constant(c, dtype):
        if dtype is torch.int64:
            return int(c)
        elif dtype is torch.double:
            return float(c)
        elif dtype is torch.bool:
            return bool(c)
        else:
            raise AssertionError(f"unrecognized dtype {dtype}")

    @staticmethod
    def not_(a):
        return torch.sym_not(a)

    @classmethod
    def sym_sum(cls, args):
        if len(args) == 0:
            return 0
        if len(args) == 1:
            return args[0]
        acc = cls.add(args[0], args[1])
        for i in range(2, len(args)):
            acc = cls.add(acc, args[i])
        return acc

    @staticmethod
    def floordiv(a, b):
        return a // b

    @staticmethod
    def mod(x, y):
        return x % y

    @staticmethod
    def truncdiv(a, b):
        return a / b

    @staticmethod
    def to_dtype(x, dtype):
        if dtype == torch.float64:
            return torch.sym_float(x)
        raise NotImplementedError(f"to_dtype {dtype} NYI")

    @staticmethod
    def exp(x):
        raise AssertionError("exp is not valid shape sympy expr")

    @staticmethod
    def log(x):
        raise AssertionError("log is not valid shape sympy expr")

    @staticmethod
    def log2(x):
        return torch._sym_log2(x)  # type: ignore[attr-defined]

    @staticmethod
    def sqrt(x):
        return torch._sym_sqrt(x)  # type: ignore[attr-defined]

    @staticmethod
    def minimum(a, b):
        return torch.sym_min(a, b)

    @staticmethod
    def maximum(a, b):
        return torch.sym_max(a, b)

    @staticmethod
    def floor_to_int(x, dtype):
        return math.floor(x)

    @staticmethod
    def ceil_to_int(x, dtype):
        return math.ceil(x)

    @staticmethod
    def floor(x):
        return float(math.floor(x))

    @staticmethod
    def ceil(x):
        return float(math.ceil(x))

    @staticmethod
    def truediv(a, b):
        return a / b

    @staticmethod
    def pow(a, b):
        return a**b

    @staticmethod
    def pow_by_natural(a, b):
        # Pray that safe_pow is not needed here lol.  In particular, this
        # never participates in VR low/high ranges, so overflow should be
        # unlikely
        return a**b

    @staticmethod
    def round_to_int(a, dtype):
        return round(a)

    @staticmethod
    def round_decimal(a, b):
        return round(a, ndigits=b)

    @staticmethod
    def bitwise_and(a, b):
        return a & b

    @staticmethod
    def bitwise_or(a, b):
        return a | b


# Like PythonReferenceAnalysis, but some export-unfriendly choices of
# operators to make things faster
class OptimizedPythonReferenceAnalysis(PythonReferenceAnalysis):
    @staticmethod
    def sym_sum(args):
        return torch.sym_sum(args)


def _to_dtype(x: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
    return torch.ops.prims.convert_element_type.default(x, dtype)


# Suppose we have some int/float arguments.  This diagram commutes:
#
#   int/float  -- PythonReferenceAnalysis.op -->  int/float
#       |                                           |
#       |                                           |
#      torch.tensor(..., dtype=torch.int64/torch.float64)
#       |                                           |
#       V                                           V
#    Tensor    -- TensorReferenceAnalysis.op -->  Tensor
#
# NB: int before and after must be representable in int64 (we will
# insert guards accordingly.)
#
# This is guaranteed to be FX traceable with OpOverloads only.
class TensorReferenceAnalysis:
    # NB: This is actually dead, because with Proxy tracing the factory
    # function isn't traced correctly.  Here for completeness.
    @staticmethod
    def constant(c, dtype):
        d: Union[int, float, bool]
        if dtype is torch.int64:
            d = int(c)
        elif dtype is torch.double:
            d = float(c)
        elif dtype is torch.bool:
            d = bool(c)
        else:
            raise AssertionError(f"unrecognized dtype {dtype}")
        return torch.ops.aten.scalar_tensor.default(d, dtype=dtype)

    @staticmethod
    def or_(a, b):
        return torch.ops.aten.logical_or.default(a, b)

    @staticmethod
    def and_(a, b):
        return torch.ops.aten.logical_and.default(a, b)

    @staticmethod
    def bitwise_and(a, b):
        return torch.ops.aten.bitwise_and(a, b)

    @staticmethod
    def bitwise_or(a, b):
        return torch.ops.aten.bitwise_or(a, b)

    @staticmethod
    def eq(a, b):
        return torch.ops.aten.eq.Tensor(a, b)

    @classmethod
    def ne(cls, a, b):
        return torch.ops.aten.ne.Tensor(a, b)

    @staticmethod
    def lt(a, b):
        return torch.ops.aten.lt.Tensor(a, b)

    @staticmethod
    def gt(a, b):
        return torch.ops.aten.gt.Tensor(a, b)

    @staticmethod
    def le(a, b):
        return torch.ops.aten.le.Tensor(a, b)

    @staticmethod
    def ge(a, b):
        return torch.ops.aten.ge.Tensor(a, b)

    @staticmethod
    def not_(a):
        return torch.ops.aten.logical_not.default(a)

    @staticmethod
    def reciprocal(x):
        return torch.ops.aten.reciprocal.default(x)

    @staticmethod
    def square(x):
        # TODO: maybe composite implicit autograd doesn't work here?
        return torch.ops.aten.square.default(x)

    @staticmethod
    def trunc_to_int(x, dtype):
        return _to_dtype(torch.ops.aten.trunc.default(x), dtype)

    @staticmethod
    def ceil_to_int(x, dtype):
        return _to_dtype(torch.ops.aten.ceil.default(x), dtype)

    @staticmethod
    def floor_to_int(x, dtype):
        return _to_dtype(torch.ops.aten.floor.default(x), dtype)

    @staticmethod
    def floor(x):
        return torch.ops.aten.floor.default(x)

    @staticmethod
    def ceil(x):
        return torch.ops.aten.ceil.default(x)

    @staticmethod
    def to_dtype(x, dtype):
        return _to_dtype(x, dtype)

    @staticmethod
    def mod(x, y):
        # TODO: https://github.com/pytorch/pytorch/pull/133654
        raise NotImplementedError(
            "no C-style modulus operation available from frontend atm"
        )

    @staticmethod
    def abs(x):
        return torch.ops.aten.abs.default(x)

    @staticmethod
    def neg(x):
        return torch.ops.aten.neg.default(x)

    @staticmethod
    def truediv(a, b):
        return torch.ops.aten.true_divide.Tensor(a, b)

    @staticmethod
    def int_truediv(a, b):
        raise NotImplementedError(
            "Python int truediv difficult to implement in PyTorch atm"
        )

        # TODO: This is wrong, CPython has a custom implementation of true
        # division that results in higher precision when the floats are
        # sufficiently large.  Short term fix: add a guard here
        return torch.ops.aten.true_divide.default(
            _to_dtype(a, torch.float64), _to_dtype(b, torch.float64)
        )

    @staticmethod
    def floordiv(a, b):
        return torch.ops.aten.div.Tensor_mode(a, b, rounding_mode="floor")

    @staticmethod
    def truncdiv(a, b):
        raise NotImplementedError(
            "no C-style truncdiv operation available from frontend atm"
        )

    @staticmethod
    def add(a, b):
        return torch.ops.aten.add.Tensor(a, b)

    @staticmethod
    def mul(a, b):
        return torch.ops.aten.mul.Tensor(a, b)

    @staticmethod
    def sub(a, b):
        return torch.ops.aten.sub.Tensor(a, b)

    @staticmethod
    def exp(x):
        return torch.ops.aten.exp.default(x)

    @staticmethod
    def log(x):
        return torch.ops.aten.log.default(x)

    @staticmethod
    def log2(x):
        return torch.ops.aten.log2.default(x)

    @staticmethod
    def sqrt(x):
        return torch.ops.aten.sqrt.default(x)

    @staticmethod
    def sin(x):
        return torch.ops.aten.sin.default(x)

    @staticmethod
    def cos(x):
        return torch.ops.aten.cos.default(x)

    @staticmethod
    def tanh(x):
        return torch.ops.aten.tanh.default(x)

    @staticmethod
    def sinh(x):
        return torch.ops.aten.sinh.default(x)

    @staticmethod
    def cosh(x):
        return torch.ops.aten.cosh.default(x)

    @staticmethod
    def tan(x):
        return torch.ops.aten.tan.default(x)

    @staticmethod
    def acos(x):
        return torch.ops.aten.acos.default(x)

    @staticmethod
    def atan(x):
        return torch.ops.aten.atan.default(x)

    @staticmethod
    def asin(x):
        return torch.ops.aten.asin.default(x)

    @staticmethod
    def pow(a, b):
        return torch.ops.aten.pow.Tensor_Tensor(a, b)

    @staticmethod
    def pow_by_natural(a, b):
        # NB: pow handles int x int fine
        return torch.ops.aten.pow.Tensor_Tensor(a, b)

    @staticmethod
    def minimum(a, b):
        return torch.ops.aten.minimum.default(a, b)

    @staticmethod
    def maximum(a, b):
        return torch.ops.aten.maximum.default(a, b)

    @staticmethod
    def round_to_int(a, dtype):
        return torch.ops.aten.round.default(a)

    @staticmethod
    def round_decimal(a, b):
        raise NotImplementedError(
            "round decimal doesn't support Tensor second argument atm"
        )

        # return torch.ops.aten.round.decimals(a, b)