1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
|
# mypy: allow-untyped-defs
from __future__ import annotations
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import (
Callable,
Dict,
Generic,
Optional,
overload,
SupportsFloat,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import TypeGuard
import sympy
from sympy.logic.boolalg import Boolean as SympyBoolean, BooleanAtom
import torch
from torch._logging import LazyString
from torch._prims_common import dtype_to_type
from .functions import (
_keep_float,
FloatTrueDiv,
FloorDiv,
IntTrueDiv,
OpaqueUnaryFn_exp,
OpaqueUnaryFn_log,
OpaqueUnaryFn_log2,
OpaqueUnaryFn_sqrt,
PowByNatural,
RoundDecimal,
RoundToInt,
safe_pow,
ToFloat,
TruncToFloat,
TruncToInt,
)
from .interp import sympy_interp
from .numbers import int_oo, IntInfinity, NegativeIntInfinity
log = logging.getLogger(__name__)
__all__ = ["ValueRanges", "ValueRangeAnalysis", "bound_sympy"]
_T = TypeVar("_T", sympy.Expr, SympyBoolean)
class ValueRangeError(RuntimeError):
pass
# Like sympify, but supports less stuff, and also ensures that direct
# sympy expressions don't have free variables
def simple_sympify(e):
if isinstance(e, bool):
return sympy.true if e else sympy.false
elif isinstance(e, int):
return sympy.Integer(e)
elif isinstance(e, float):
# infinity is special; we use it to bracket integers as well
if math.isinf(e):
return sympy.oo if e > 0 else -sympy.oo
return sympy.Float(e)
elif isinstance(e, sympy.Expr):
assert e.is_number, e
# NaNs can occur when doing things like 0 * sympy.oo, but it is better
# if the operator notices this and takes care of it, because sometimes
# the NaN is inappropriate (for example, for ints, the [-oo, oo] range
# should go to zero when multiplied with [0, 0])
assert e != sympy.nan
return e
elif isinstance(e, BooleanAtom):
return e
else:
raise AssertionError(f"not simple sympy type {type(e)}: {e}")
# Sympy atomics only. Unlike <=, it also works on Sympy bools.
def sympy_generic_le(lower, upper):
if isinstance(lower, sympy.Expr):
assert isinstance(upper, sympy.Expr)
# instead of lower <= upper, we do upper >= lower since upper is mostly int_oo
# and we have better code paths there.
return upper >= lower
else:
# only negative condition is True > False
assert isinstance(lower, SympyBoolean) and isinstance(upper, SympyBoolean), (
lower,
upper,
)
return not (lower and not upper)
def vr_is_bool(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[SympyBoolean]]:
return vr.is_bool
def vr_is_expr(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[sympy.Expr]]:
return not vr.is_bool
ExprIn = Union[int, float, sympy.Expr]
BoolIn = Union[bool, SympyBoolean]
AllIn = Union[ExprIn, BoolIn]
ExprFn = Callable[[sympy.Expr], sympy.Expr]
ExprFn2 = Callable[[sympy.Expr, sympy.Expr], sympy.Expr]
BoolFn = Callable[[SympyBoolean], SympyBoolean]
BoolFn2 = Callable[[SympyBoolean, SympyBoolean], SympyBoolean]
AllFn = Union[ExprFn, BoolFn]
AllFn2 = Union[ExprFn2, BoolFn2]
@dataclasses.dataclass(frozen=True)
class ValueRanges(Generic[_T]):
if TYPE_CHECKING:
# ruff doesn't understand circular references but mypy does
ExprVR = ValueRanges[sympy.Expr] # noqa: F821
BoolVR = ValueRanges[SympyBoolean] # noqa: F821
AllVR = Union[ExprVR, BoolVR]
# Although the type signature here suggests you can pass any
# sympy expression, in practice the analysis here only works
# with constant sympy expressions
lower: _T
upper: _T
is_bool: bool
is_int: bool
is_float: bool
def __repr__(self) -> str:
return f"VR[{self.lower}, {self.upper}]"
@overload
def __init__(
self: ValueRanges[sympy.Expr],
lower: ExprIn,
upper: ExprIn,
) -> None:
...
@overload
def __init__( # type: ignore[misc]
self: ValueRanges[SympyBoolean],
lower: BoolIn,
upper: BoolIn,
) -> None:
...
def __init__(self, lower: AllIn, upper: AllIn) -> None:
lower = simple_sympify(lower)
upper = simple_sympify(upper)
# TODO: when the bounds have free variables, this may be
# nontrivial to actually verify
try:
if not sympy_generic_le(lower, upper):
raise ValueRangeError(f"Invalid ranges [{lower}:{upper}]")
except TypeError as e:
raise TypeError(f"Could not compare {lower} <= {upper}") from e
is_bool_lower = isinstance(lower, SympyBoolean)
is_bool_upper = isinstance(upper, SympyBoolean)
assert is_bool_lower == is_bool_upper, (lower, upper)
# Warning: is_int/is_float is best effort. We do pretty well in
# Dynamo, but in Inductor these attributes are often wrong because we
# are not very rigorous in dtype analysis. This is also why we need
# the flexible analysis for is_int: sometimes a sympy.oo pops in for
# an integer bound. I would /like/ for us not to do this, but it's
# too hard to push the invariant through right now.
if isinstance(lower, sympy.Integer) and upper == sympy.oo:
upper = int_oo
if isinstance(upper, sympy.Integer) and lower == -sympy.oo:
lower = -int_oo
# NB: [-int_oo, -int_oo] and [int_oo, int_oo] are allowed
integer_types = (sympy.Integer, NegativeIntInfinity, IntInfinity)
is_int_lower = isinstance(lower, integer_types)
is_int_upper = isinstance(upper, integer_types)
# Because this is a frozen class
object.__setattr__(self, "lower", lower)
object.__setattr__(self, "upper", upper)
# Unlike bool/int in Python, we don't report bools are ints
#
# NB: is_bool_lower == is_bool_upper, so we only need to check one
object.__setattr__(self, "is_bool", is_bool_lower)
object.__setattr__(
self,
"is_int",
not self.is_bool and is_int_lower and is_int_upper,
)
"""
# This assert is just impossible right now, too many sympy bugs
if self.is_int:
# NB: sympy will sometimes randomly lose the float-ness of zero,
# so we also need to account for that in the assertion here.
# See also https://github.com/sympy/sympy/issues/26620
assert isinstance(lower, sympy.Integer) or lower in [-sympy.oo, 0], (
lower,
upper,
)
assert isinstance(upper, sympy.Integer) or upper in [sympy.oo, 0], (lower, upper)
"""
# NB: [-oo, oo] always advertises as float!
object.__setattr__(self, "is_float", not self.is_bool and not self.is_int)
assert self.is_bool or self.is_int or self.is_float, (lower, upper)
def boolify(self) -> ValueRanges[SympyBoolean]:
if vr_is_bool(self):
return self
elif self == ValueRanges.unknown():
return ValueRanges.unknown_bool()
else:
raise AssertionError(f"not bool like {self}")
def __contains__(self, x: AllIn) -> bool:
return ValueRanges.wrap(x).issubset(self)
def issubset(self, other):
if other is self.unknown_int():
return True
return sympy_generic_le(other.lower, self.lower) and sympy_generic_le(
self.upper, other.upper
)
def tighten(self, other) -> ValueRanges:
"""Given two ValueRanges, returns their intersection"""
return self & other
# Intersection
@overload
def __and__(
self: ValueRanges[sympy.Expr],
other: ValueRanges[sympy.Expr],
) -> ValueRanges[sympy.Expr]:
...
@overload
def __and__( # type: ignore[misc]
self: ValueRanges[SympyBoolean],
other: ValueRanges[SympyBoolean],
) -> ValueRanges[SympyBoolean]:
...
def __and__(self: AllVR, other: AllVR) -> AllVR:
if other in (ValueRanges.unknown(), ValueRanges.unknown_int()):
return self
if self in (ValueRanges.unknown(), ValueRanges.unknown_int()):
return other
assert self.is_bool == other.is_bool, (self, other)
assert self.is_int == other.is_int, (self, other)
assert self.is_float == other.is_float, (self, other)
if self.is_bool:
return ValueRanges(
sympy.Or(self.lower, other.lower), sympy.And(self.upper, other.upper)
)
else:
return ValueRanges(
sympy.Max(self.lower, other.lower), sympy.Min(self.upper, other.upper)
)
# Union
@overload
def __or__(
self: ValueRanges[sympy.Expr],
other: ValueRanges[sympy.Expr],
) -> ValueRanges[sympy.Expr]:
...
@overload
def __or__( # type: ignore[misc]
self: ValueRanges[SympyBoolean],
other: ValueRanges[SympyBoolean],
) -> ValueRanges[SympyBoolean]:
...
def __or__(self: AllVR, other: AllVR) -> AllVR:
if ValueRanges.unknown() in (self, other):
return ValueRanges.unknown()
assert self.is_bool == other.is_bool, (self, other)
assert self.is_int == other.is_int, (self, other)
assert self.is_float == other.is_float, (self, other)
if self.is_bool:
return ValueRanges(
sympy.And(self.lower, other.lower), sympy.Or(self.upper, other.upper)
)
else:
return ValueRanges(
sympy.Min(self.lower, other.lower), sympy.Max(self.upper, other.upper)
)
def is_singleton(self) -> bool:
return self.lower == self.upper
@staticmethod
@functools.lru_cache(maxsize=None)
def unknown() -> ValueRanges[sympy.Expr]:
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
@functools.lru_cache(maxsize=None)
def unknown_int() -> ValueRanges[sympy.Expr]:
return ValueRanges(-int_oo, int_oo)
@staticmethod
@functools.lru_cache(maxsize=None)
def unknown_bool() -> ValueRanges[SympyBoolean]:
return ValueRanges(sympy.false, sympy.true)
@overload
@staticmethod
# work around the fact that bool and int overlap
def wrap(arg: Union[ExprIn, ExprVR]) -> ExprVR: # type: ignore[overload-overlap]
...
@overload
@staticmethod
def wrap(arg: Union[BoolIn, BoolVR]) -> BoolVR: # type: ignore[misc]
...
@staticmethod
def wrap(arg: Union[AllIn, AllVR]) -> AllVR:
if isinstance(arg, ValueRanges):
return arg
if isinstance(arg, float) and math.isnan(arg):
return ValueRanges.unknown()
# arg is either ExprIn or BoolIn, but we don't know it here
return ValueRanges(arg, arg) # type: ignore[arg-type]
@staticmethod
def increasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""Increasing: x <= y => f(x) <= f(y)."""
x = ValueRanges.wrap(x)
return ValueRanges(fn(x.lower), fn(x.upper))
@overload
@staticmethod
def decreasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
...
@overload
@staticmethod
def decreasing_map(x: Union[BoolIn, BoolVR], fn: BoolFn) -> BoolVR: # type: ignore[misc]
...
@staticmethod
def decreasing_map(x: Union[AllIn, AllVR], fn: AllFn) -> AllVR:
"""Decreasing: x <= y => f(x) >= f(y)."""
x = ValueRanges.wrap(x)
# consistently either Expr or Bool, but we don't know it here
return ValueRanges(fn(x.upper), fn(x.lower)) # type: ignore[arg-type]
@staticmethod
def monotone_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""It's increasing or decreasing."""
x = ValueRanges.wrap(x)
l = fn(x.lower)
u = fn(x.upper)
return ValueRanges(min(l, u), max(l, u))
@staticmethod
def convex_min_zero_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""Fn is convex and has a minimum at 0."""
x = ValueRanges.wrap(x)
if 0 in x:
upper = max(fn(x.lower), fn(x.upper))
upper = simple_sympify(upper)
if isinstance(upper, sympy.Float) or upper == sympy.oo:
return ValueRanges(0.0, upper)
return ValueRanges(0, upper)
return ValueRanges.monotone_map(x, fn)
@overload
@staticmethod
def coordinatewise_increasing_map(
x: Union[ExprIn, ExprVR],
y: Union[ExprIn, ExprVR],
fn: ExprFn2,
) -> ExprVR:
...
@overload
@staticmethod
def coordinatewise_increasing_map( # type: ignore[misc]
x: Union[BoolIn, BoolVR],
y: Union[BoolIn, BoolVR],
fn: BoolFn2,
) -> BoolVR:
...
@staticmethod
def coordinatewise_increasing_map(
x: Union[AllIn, AllVR],
y: Union[AllIn, AllVR],
fn: AllFn2,
) -> AllVR:
"""
It's increasing on each coordinate.
Mathematically:
For every 1 <= i <= n and x_i <= y_i we have that
f(x1, .., xn) <= f(x1, , yi, ..., xn)
"""
x, y = ValueRanges.wrap(x), ValueRanges.wrap(y)
return ValueRanges(
fn(x.lower, y.lower), # type: ignore[arg-type]
fn(x.upper, y.upper), # type: ignore[arg-type]
)
@classmethod
def coordinatewise_monotone_map(cls, x, y, fn):
"""It's increasing or decreasing on each coordinate."""
x, y = cls.wrap(x), cls.wrap(y)
products = [
fn(a, b)
for a, b in itertools.product([x.lower, x.upper], [y.lower, y.upper])
]
return ValueRanges(min(products), max(products))
class SymPyValueRangeAnalysis:
"""
It gives bounds on a SymPy operator given bounds on its arguments
See the function `bound_sympy` for a function that applies this logic to a full SymPy expression
"""
@staticmethod
def constant(value, dtype):
if isinstance(value, ValueRanges):
assert value.is_singleton()
value = value.lower
# NB: value is NOT a sympy expression, it's a constant!
is_python = isinstance(value, (int, float, bool))
assert is_python or isinstance(
value, (BooleanAtom, sympy.Integer, sympy.Number)
)
# using nan makes subsequent computation throw, and for the purposes of optimization
# returning -math.inf - math.inf is equivalent to giving up
if isinstance(value, SupportsFloat) and math.isnan(value):
if dtype == torch.bool:
return ValueRanges.unknown_bool()
elif dtype.is_floating_point:
return ValueRanges.unknown()
else:
return ValueRanges.unknown_int()
if is_python:
type_ = dtype_to_type(dtype)
value = type_(value)
else:
# We do a type check on a best-effort basis
# We don't want to force a cast to sympy.Float if the value is Rational to avoid losing precision
if dtype == torch.bool:
assert isinstance(value, BooleanAtom)
elif dtype.is_floating_point:
assert not value.is_finite or value.is_real
else:
# dtype is intXX
assert value.is_integer
r = ValueRanges.wrap(value)
return r
@staticmethod
def to_dtype(a, dtype, src_dtype=None):
if dtype == torch.float64:
return ValueRanges.increasing_map(a, ToFloat)
elif dtype == torch.bool:
return ValueRanges.unknown_bool()
elif not dtype.is_floating_point:
return ValueRanges.unknown_int()
return ValueRanges.unknown()
@staticmethod
def trunc_to_int(a, dtype):
return ValueRanges.increasing_map(a, TruncToInt)
@staticmethod
def not_(a):
a = ValueRanges.wrap(a)
a = a.boolify()
assert a.is_bool
return ValueRanges.decreasing_map(a, sympy.Not)
@staticmethod
def or_(a, b):
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.Or)
@staticmethod
def and_(a, b):
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.And)
@staticmethod
def _bool_to_int(x):
if x.is_singleton():
return ValueRanges.wrap(sympy.Integer(1 if x.lower else 0))
else:
return ValueRanges(sympy.Integer(0), sympy.Integer(1))
@classmethod
def bitwise_and(cls, a, b):
a, b = ValueRanges.wrap(a), ValueRanges.wrap(b)
if a.is_bool and b.is_bool:
return cls.and_(a, b)
if a.is_bool:
a = cls._bool_to_int(a)
if b.is_bool:
b = cls._bool_to_int(b)
lower = min(a.lower, b.lower)
if lower < 0 and lower != -sympy.oo and lower != -int_oo:
# If both lower bounds are negative, then bits start like
# 1...10..., so the smallest possible value is 1...101...1.
# Thus, we need to find the next smallest power of 2 (inclusive).
try:
lower = -(1 << int(-lower - 1).bit_length())
except Exception:
lower = -int_oo
else:
lower = 0
return ValueRanges(lower, max(a.upper, b.upper))
@classmethod
def bitwise_or(cls, a, b):
a, b = ValueRanges.wrap(a), ValueRanges.wrap(b)
if a.is_bool and b.is_bool:
return cls.or_(a, b)
if a.is_bool:
a = cls._bool_to_int(a)
if b.is_bool:
b = cls._bool_to_int(b)
upper = max(a.upper, b.upper)
if upper == 0:
upper = 0
elif upper > 0 and upper != sympy.oo and upper != int_oo:
# If both upper bounds are positive, then the largest
# possible value is 01...1, so we need to find
# next largest power of 2 (exclusive), minus 1
try:
upper = (1 << int(upper).bit_length()) - 1
except Exception:
upper = int_oo
elif upper < 0:
upper = -1
return ValueRanges(min(a.lower, b.lower), upper)
@staticmethod
def eq(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if a.is_singleton() and b.is_singleton() and a.lower == b.lower:
return ValueRanges.wrap(sympy.true)
elif a.lower > b.upper or b.lower > a.upper: # ranges disjoint
return ValueRanges.wrap(sympy.false)
return ValueRanges(sympy.false, sympy.true)
@classmethod
def ne(cls, a, b):
return cls.not_(cls.eq(a, b))
@classmethod
def identity(cls, a):
return ValueRanges.wrap(a)
@classmethod
def lt(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
assert a.is_bool == b.is_bool
if a.is_bool:
return cls.and_(cls.not_(a), b)
else:
if a.upper < b.lower:
return ValueRanges.wrap(sympy.true)
elif a.lower >= b.upper:
return ValueRanges.wrap(sympy.false)
return ValueRanges(sympy.false, sympy.true)
@classmethod
def gt(cls, a, b):
return cls.lt(b, a)
@classmethod
def le(cls, a, b):
return cls.not_(cls.gt(a, b))
@classmethod
def ge(cls, a, b):
return cls.not_(cls.lt(a, b))
@staticmethod
def add(a, b):
return ValueRanges.coordinatewise_increasing_map(
a, b, _keep_float(operator.add)
)
@classmethod
def mul(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
assert a.is_bool == b.is_bool
if a.is_bool:
return cls.and_(a, b)
def safe_mul(a, b):
# Make unknown() * wrap(0.0) == wrap(0.0)
if a == 0.0 or a == 0:
return a
elif b == 0.0 or b == 0:
return b
else:
return a * b
return ValueRanges.coordinatewise_monotone_map(a, b, _keep_float(safe_mul))
@staticmethod
def int_truediv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b or ((-int_oo in a or int_oo in a) and (-int_oo in b or int_oo in b)):
return ValueRanges.unknown()
else:
return ValueRanges.coordinatewise_monotone_map(
a, b, _keep_float(IntTrueDiv)
)
@staticmethod
def truediv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b or (
(-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)
):
return ValueRanges.unknown()
else:
return ValueRanges.coordinatewise_monotone_map(
a, b, _keep_float(FloatTrueDiv)
)
@staticmethod
def floordiv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b:
return ValueRanges.unknown_int()
products = []
for x, y in itertools.product([a.lower, a.upper], [b.lower, b.upper]):
r = FloorDiv(x, y)
if r is sympy.nan:
products.append((sympy.sign(x) * sympy.sign(y)) * int_oo)
else:
products.append(r)
return ValueRanges(min(products), max(products))
@classmethod
def mod(cls, x, y):
x = ValueRanges.wrap(x)
y = ValueRanges.wrap(y)
# nb. We implement C semantics
def c_mod(a, b):
ret = abs(a) % abs(b)
if a < 0:
ret *= -1
return ret
def c_div(a, b):
x = a / b
return sympy.Integer(x) if x.is_finite and x not in (int_oo, -int_oo) else x
if 0 in y:
return ValueRanges.unknown_int()
elif y.is_singleton():
y_val = abs(y.lower)
# If it wraps, we need to take the whole interval
# The function is locally linear if they are in the same class
if c_div(x.lower, y_val) == c_div(x.upper, y_val):
return ValueRanges.increasing_map(x, lambda u: c_mod(u, y_val))
if x.upper < 0:
# Negative case
return ValueRanges(-y_val + 1, 0)
elif x.lower > 0:
# Positive case
return ValueRanges(0, y_val - 1)
else:
# Mixed case
lower = max(-y_val + 1, x.lower)
upper = min(y_val - 1, x.upper)
return ValueRanges(lower, upper)
else:
# Too difficult, we bail out
upper = cls.abs(y).upper - 1
return ValueRanges(-upper, upper)
@classmethod
def modular_indexing(cls, a, b, c):
return cls.mod(cls.floordiv(a, b), c)
@classmethod
def is_non_overlapping_and_dense_indicator(cls, *args):
return ValueRanges.unknown_int()
@classmethod
def pow_by_natural(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if a.is_singleton() and b.is_singleton():
return ValueRanges.wrap(safe_pow(a.lower, b.lower))
# NB: Exclude zero, because zero is special
elif a.lower >= 1:
# We should know that b >= 0 but we may have forgotten this fact due
# to replacements, so don't assert it, but DO clamp it to prevent
# degenerate problems
return ValueRanges.coordinatewise_increasing_map(
a, b & ValueRanges(0, int_oo), PowByNatural
)
elif b.is_singleton():
if b.lower % 2 == 0:
# x^n where n is even
return ValueRanges.convex_min_zero_map(
a, lambda x: safe_pow(x, b.lower)
)
else:
# x^n where n is odd
return ValueRanges.increasing_map(a, lambda x: safe_pow(x, b.lower))
else:
# a is potentially negative, and we don't know if the exponent is
# even or odd. So just conservatively set the upper and lower
# bound based on what the maximum absolute value could be, in both
# directions
max_base = max(a.upper, -a.lower)
return ValueRanges(
-(safe_pow(max_base, b.upper)), safe_pow(max_base, b.upper)
)
@classmethod
def pow(cls, a, b):
return ValueRanges.unknown()
# We could implement all this, but for floating point pow, is there
# really a point?
"""
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
# Not implemented yet. It's a bit tricky
# If you want to implement it, compute the partial derivatives of a ** b
# and check the ranges where the function is increasing / decreasing
# Another non-tight way of doing this is defaulting to doing noting that for a > 0, a ** b == exp(b * log(a))
# If this second option is implemented, by carefult about the types and possible infinities here and there.
if not b.is_singleton():
return ValueRanges.unknown()
b = b.lower
if a.is_singleton():
a = a.lower
r = a**b
if not r.is_finite:
return ValueRanges.unknown()
return ValueRanges.wrap(r)
if b == 0:
if not a.lower.is_finite:
return ValueRanges.unknown()
return ValueRanges.wrap(1.0)
if b < 0:
a = cls.reciprocal(a)
b = -b
if a == ValueRanges.unknown():
return ValueRanges.unknown()
# If the base is positive, then we're good, otherwise nothing's defined
if a.lower >= 0:
return ValueRanges.increasing_map(a, lambda x: x**b)
else:
return ValueRanges.unknown()
"""
@staticmethod
def reciprocal(x):
"""Needed as it's used in pow, but it won't appear on a SymPy expression"""
x = ValueRanges.wrap(x)
if 0 in x:
return ValueRanges.unknown()
else:
return ValueRanges.decreasing_map(x, lambda y: FloatTrueDiv(1.0, y)) # type: ignore[operator]
@staticmethod
def abs(x):
return ValueRanges.convex_min_zero_map(x, abs)
@staticmethod
def exp(x):
return ValueRanges.increasing_map(x, OpaqueUnaryFn_exp)
@staticmethod
def log(x):
x = ValueRanges.wrap(x)
if x.lower <= 0:
return ValueRanges.unknown()
return ValueRanges.increasing_map(x, OpaqueUnaryFn_log)
@staticmethod
def log2(x):
x = ValueRanges.wrap(x)
if x.lower <= 0:
return ValueRanges.unknown()
return ValueRanges.increasing_map(x, OpaqueUnaryFn_log2)
@classmethod
def minimum(cls, a, b):
return cls.min_or_max(a, b, sympy.Min)
@classmethod
def maximum(cls, a, b):
return cls.min_or_max(a, b, sympy.Max)
@staticmethod
def min_or_max(a, b, fn):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
return ValueRanges.coordinatewise_increasing_map(a, b, fn)
@classmethod
def floor_to_int(cls, x, dtype):
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.floor)
@classmethod
def ceil_to_int(cls, x, dtype):
return ValueRanges.increasing_map(
x, sympy.functions.elementary.integers.ceiling
)
# I think these implementations are sound. The hazard here is that sympy
# will carry out the floor/ceil at too high precision and then something
# bad will happen when we convert it to float.
#
# For truncation, the implementation is clearly sound, because the desired
# target float is always exactly representable, since you're just chopping
# off bits the mantissa. But what about ceil/floor?
#
# The important constraint here is that we're not defining floor on
# arbitrary real numbers, only representable float numbers. So we can
# take advantage of the fact that before we reach the first
# unrepresentable integer in floating point space, we have the range of
# numbers corresponding to exponent zero: all integers, with no fractional
# amounts. floor/ceil is an identity operation in this case. In the
# range below here, representable floating point numbers are spaced
# exactly 1/2 apart, and notably, both the floor/ceil are defined floating
# point numbers. There is no "gap" as you step up to the next exponent.
@classmethod
def floor(cls, x):
return ValueRanges.increasing_map(
x, _keep_float(sympy.functions.elementary.integers.floor)
)
@classmethod
def ceil(cls, x):
return ValueRanges.increasing_map(
x, _keep_float(sympy.functions.elementary.integers.ceiling)
)
@classmethod
def round_decimal(cls, number, ndigits):
if not ndigits.is_singleton():
return ValueRanges.unknown()
ndigits = ndigits.lower
# We can't use functools.partial here since sympy doesn't support keyword arguments, but we have to bind
# the second parameter.
fn = lambda number: RoundDecimal(number, ndigits) # type: ignore[misc, assignment] # noqa: E731
return ValueRanges.increasing_map(number, fn)
@classmethod
def round_to_int(cls, number, dtype):
return ValueRanges.increasing_map(number, RoundToInt)
# It's used in some models on symints
@staticmethod
def sqrt(x):
x = ValueRanges.wrap(x)
if x.lower < 0:
return ValueRanges.unknown()
return ValueRanges.increasing_map(x, OpaqueUnaryFn_sqrt)
@staticmethod
def where(a, b, c):
b = ValueRanges.wrap(b)
c = ValueRanges.wrap(c)
a = a.boolify()
# We sometimes write unknown without specifying the type correctly
# In particular, we do that when initialising the bounds for loads in bounds.py
assert b.is_bool == c.is_bool or ValueRanges.unknown() in (b, c)
if b.is_bool:
return ValueRanges(sympy.And(b.lower, c.lower), sympy.Or(b.upper, c.upper))
else:
return ValueRanges(sympy.Min(b.lower, c.lower), sympy.Max(b.upper, c.upper))
# expr_cond_pair is used to represent a single (expr, condition) pair in piecewise.
# We just return the value range of the expression and its corresponding condition as a tuple
# and defer the analysis to piecewise
@staticmethod
def expr_cond_pair(a, b):
b = b.boolify()
return (a, b)
# piecewise function can be used to convert a SymBool to SymInt:
# int_expr = Piecewise((1, bool_expr), (0, True)), it evalutes to 1 when sym_bool is True and 0 otherwise.
#
# ranges is a sequence of (expr_range, condition_range) pairs. The range pair is constructed in expr_cond_pair.
# The ValueRange of Piecewise is just the union of all expr ranges whose condition expr can be True.
@staticmethod
def piecewise(*ranges):
init_range = None
for expr_range, cond_range in ranges:
if sympy.true in cond_range:
if init_range is None:
init_range = expr_range
else:
init_range = init_range | expr_range
return init_range
@staticmethod
def cos(x):
# TODO: We should tighten value ranges
# If input range span is pi + 2*pi*k, then output range is (-1, 1)
# otherwise the minimum of the value of the function on the extremes
return ValueRanges(-1.0, 1.0)
@staticmethod
def cosh(x):
return ValueRanges(0.0, sympy.oo)
"""
x = ValueRanges.wrap(x)
if x.lower > 0:
return ValueRanges.increasing_map(x, OpaqueUnaryFn_cosh)
elif x.upper < 0:
return ValueRanges.decreasing_map(x, OpaqueUnaryFn_cosh)
return ValueRanges(0.0, sympy.oo)
"""
@staticmethod
def sin(x):
# TODO: We should tighten value ranges
# See details on cos
return ValueRanges(-1.0, 1.0)
@staticmethod
def sinh(x):
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_sinh)
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def tan(x):
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def tanh(x):
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_tanh)
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def asin(x):
return ValueRanges(-sympy.oo, sympy.oo)
"""
x = ValueRanges.wrap(x)
if -1 <= x.lower and x.upper <= 1:
return ValueRanges.increasing_map(x, OpaqueUnaryFn_asinh)
return ValueRanges.unknown()
"""
@staticmethod
def acos(x):
return ValueRanges(-sympy.oo, sympy.oo)
"""
x = ValueRanges.wrap(x)
if -1 <= x.lower and x.upper <= 1:
return ValueRanges.decreasing_map(x, OpaqueUnaryFn_acos)
return ValueRanges.unknown()
"""
@staticmethod
def atan(x):
return ValueRanges(-sympy.oo, sympy.oo)
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_atan)
@staticmethod
def trunc(x):
return ValueRanges.increasing_map(x, TruncToFloat)
class ValueRangeAnalysis(SymPyValueRangeAnalysis):
def __init__(self) -> None:
self.name = "ValueRangeAnalysis"
boolean_operators = (
"xor",
"logical_and",
"logical_or",
"logical_not",
)
for op in boolean_operators:
setattr(self, op, self.bool_handler)
@staticmethod
def bool_handler(*args, **kwargs):
# just assuming bools can have both values
return ValueRanges(sympy.false, sympy.true) # type: ignore[arg-type]
@staticmethod
def default_handler(*args, **kwargs):
# many ops are unlikely to show up in optimizable indexing compute,
# so we dont have full coverage
return ValueRanges.unknown()
def load(self, name: str, index: sympy.Expr):
return ValueRanges.unknown()
def store(self, name, index, value, mode=None):
return
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
return ValueRanges.unknown()
@classmethod
def index_expr(cls, index, dtype):
assert isinstance(index, ValueRanges)
return cls.to_dtype(index, dtype)
@staticmethod
def to_dtype(x, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None):
x = ValueRanges.wrap(x)
if dtype == torch.bool:
if x.is_singleton():
return ValueRanges.wrap(x.lower != 0)
elif x.is_bool:
return x
elif 0 not in x:
return ValueRanges.wrap(sympy.true)
else:
return ValueRanges(sympy.false, sympy.true)
def cast(x, dtype):
# dtype is int or float
if dtype.is_floating_point:
return sympy.Float(x)
else:
if x in (int_oo, -int_oo):
return x
try:
return sympy.Integer(x)
except TypeError:
# inf cannot be cast to Integer
return x
if x.is_bool:
if x.is_singleton():
val = 1 if x.lower else 0
return ValueRanges.wrap(cast(val, dtype))
else:
return ValueRanges(cast(0, dtype), cast(1, dtype))
else:
# int to float or float to int
return ValueRanges(cast(x.lower, dtype), cast(x.upper, dtype))
@staticmethod
def square(x):
return ValueRanges.convex_min_zero_map(x, lambda y: PowByNatural(y, 2))
@staticmethod
def neg(x):
return ValueRanges.decreasing_map(x, operator.neg)
# TODO: this is slightly inaccurate because truncdiv operates at integer
# precision, but we're going through float truediv which means we can
# potentially lose precision on the bounds
@classmethod
def truncdiv(cls, a, b):
x = cls.truediv(a, b)
if x == ValueRanges.unknown():
return x
return cls.trunc(x)
@classmethod
def sub(cls, a, b):
return cls.add(a, cls.neg(b))
def __getattr__(self, name):
log.debug("unhandled ValueRange op %s", name)
return self.default_handler
def bound_sympy(
expr: sympy.Expr, ranges: Optional[Dict[sympy.Symbol, ValueRanges]] = None
) -> ValueRanges:
log.debug(
"bound_sympy(%s)%s",
expr,
LazyString(
lambda: (
"\n"
+ "\n".join(
f" {k}: {r}" for k, r in ranges.items() if k in expr.free_symbols
)
if ranges
else ""
)
),
)
if isinstance(expr, sympy.Number):
return ValueRanges.wrap(expr)
ranges = ranges or {}
# If there's a tracing context, augment available constrained ranges.
context = torch._guards.TracingContext.try_get()
if context and context.fake_mode.shape_env:
if ranges:
ranges = {**context.fake_mode.shape_env.var_to_range, **ranges}
else:
ranges = context.fake_mode.shape_env.var_to_range
def missing_handler(s):
if s.is_integer: # type: ignore[attr-defined]
if s.is_positive: # type: ignore[attr-defined]
vr = ValueRanges(1, int_oo)
elif s.is_nonnegative: # type: ignore[attr-defined]
vr = ValueRanges(0, int_oo)
else:
vr = ValueRanges.unknown_int()
else:
# Don't bother trying very hard here
vr = ValueRanges.unknown()
return vr
return sympy_interp(
SymPyValueRangeAnalysis, ranges, expr, missing_handler=missing_handler
)
|