File: dataframe_wrapper.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (128 lines) | stat: -rw-r--r-- 3,293 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# mypy: allow-untyped-defs
from typing import Any, Optional


_pandas: Any = None
_WITH_PANDAS: Optional[bool] = None


def _try_import_pandas() -> bool:
    try:
        import pandas  # type: ignore[import]

        global _pandas
        _pandas = pandas
        return True
    except ImportError:
        return False


# pandas used only for prototyping, will be shortly replaced with TorchArrow
def _with_pandas() -> bool:
    global _WITH_PANDAS
    if _WITH_PANDAS is None:
        _WITH_PANDAS = _try_import_pandas()
    return _WITH_PANDAS


class PandasWrapper:
    @classmethod
    def create_dataframe(cls, data, columns):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        return _pandas.DataFrame(data, columns=columns)  # type: ignore[union-attr]

    @classmethod
    def is_dataframe(cls, data):
        if not _with_pandas():
            return False
        return isinstance(data, _pandas.core.frame.DataFrame)  # type: ignore[union-attr]

    @classmethod
    def is_column(cls, data):
        if not _with_pandas():
            return False
        return isinstance(data, _pandas.core.series.Series)  # type: ignore[union-attr]

    @classmethod
    def iterate(cls, data):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        yield from data.itertuples(index=False)

    @classmethod
    def concat(cls, buffer):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        return _pandas.concat(buffer)  # type: ignore[union-attr]

    @classmethod
    def get_item(cls, data, idx):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        return data[idx : idx + 1]

    @classmethod
    def get_len(cls, df):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        return len(df.index)

    @classmethod
    def get_columns(cls, df):
        if not _with_pandas():
            raise RuntimeError("DataFrames prototype requires pandas to function")
        return list(df.columns.values.tolist())


# When you build own implementation just override it with dataframe_wrapper.set_df_wrapper(new_wrapper_class)
default_wrapper = PandasWrapper


def get_df_wrapper():
    return default_wrapper


def set_df_wrapper(wrapper):
    global default_wrapper
    default_wrapper = wrapper


def create_dataframe(data, columns=None):
    wrapper = get_df_wrapper()
    return wrapper.create_dataframe(data, columns)


def is_dataframe(data):
    wrapper = get_df_wrapper()
    return wrapper.is_dataframe(data)


def get_columns(data):
    wrapper = get_df_wrapper()
    return wrapper.get_columns(data)


def is_column(data):
    wrapper = get_df_wrapper()
    return wrapper.is_column(data)


def concat(buffer):
    wrapper = get_df_wrapper()
    return wrapper.concat(buffer)


def iterate(data):
    wrapper = get_df_wrapper()
    return wrapper.iterate(data)


def get_item(data, idx):
    wrapper = get_df_wrapper()
    return wrapper.get_item(data, idx)


def get_len(df):
    wrapper = get_df_wrapper()
    return wrapper.get_len(df)