1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
# mypy: allow-untyped-defs
import copy as copymodule
import warnings
from abc import ABC, abstractmethod
from collections import deque
from typing import (
Any,
Callable,
Deque,
Iterator,
List,
Literal,
Optional,
Sized,
Tuple,
TypeVar,
)
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from torch.utils.data.datapipes.datapipe import IterDataPipe
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, StreamWrapper
__all__ = [
"ConcaterIterDataPipe",
"DemultiplexerIterDataPipe",
"ForkerIterDataPipe",
"MultiplexerIterDataPipe",
"ZipperIterDataPipe",
]
_T_co = TypeVar("_T_co", covariant=True)
@functional_datapipe("concat")
class ConcaterIterDataPipe(IterDataPipe):
r"""
Concatenates multiple Iterable DataPipes (functional name: ``concat``).
The resulting DataPipe will yield all the elements from the first input DataPipe, before yielding from the subsequent ones.
Args:
datapipes: Iterable DataPipes being concatenated
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> import random
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1 = IterableWrapper(range(3))
>>> dp2 = IterableWrapper(range(5))
>>> list(dp1.concat(dp2))
[0, 1, 2, 0, 1, 2, 3, 4]
"""
datapipes: Tuple[IterDataPipe]
def __init__(self, *datapipes: IterDataPipe):
if len(datapipes) == 0:
raise ValueError("Expected at least one DataPipe, but got nothing")
if not all(isinstance(dp, IterDataPipe) for dp in datapipes):
raise TypeError("Expected all inputs to be `IterDataPipe`")
self.datapipes = datapipes # type: ignore[assignment]
def __iter__(self) -> Iterator:
for dp in self.datapipes:
yield from dp
def __len__(self) -> int:
if all(isinstance(dp, Sized) for dp in self.datapipes):
return sum(len(dp) for dp in self.datapipes)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
@functional_datapipe("fork")
class ForkerIterDataPipe(IterDataPipe):
r"""
Creates multiple instances of the same Iterable DataPipe (functional name: ``fork``).
Args:
datapipe: Iterable DataPipe being copied
num_instances: number of instances of the datapipe to create
buffer_size: this restricts how far ahead the leading child DataPipe
can read relative to the slowest child DataPipe.
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
copy: copy strategy to use for items yielded by each branch. Supported
options are ``None`` for no copying, ``"shallow"`` for shallow object
copies, and ``"deep"`` for deep object copies. Defaults to ``None``.
Note:
All branches of the forked pipeline return the identical object unless
the copy parameter is supplied. If the object is mutable or contains
mutable objects, changing them in one branch will affect all others.
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(5))
>>> dp1, dp2 = source_dp.fork(num_instances=2)
>>> list(dp1)
[0, 1, 2, 3, 4]
>>> list(dp2)
[0, 1, 2, 3, 4]
"""
def __new__(
cls,
datapipe: IterDataPipe,
num_instances: int,
buffer_size: int = 1000,
copy: Optional[Literal["shallow", "deep"]] = None,
):
if num_instances < 1:
raise ValueError(
f"Expected `num_instances` larger than 0, but {num_instances} is found"
)
if num_instances == 1:
return datapipe
container = _ForkerIterDataPipe(datapipe, num_instances, buffer_size, copy) # type: ignore[abstract]
return [_ChildDataPipe(container, i) for i in range(num_instances)]
class _ContainerTemplate(ABC):
r"""Abstract class for container ``DataPipes``. The followings are three required methods."""
@abstractmethod
def get_next_element_by_instance(self, instance_id: int):
...
@abstractmethod
def is_every_instance_exhausted(self) -> bool:
...
@abstractmethod
def reset(self) -> None:
...
@abstractmethod
def get_length_by_instance(self, instance_id: int):
r"""Raise TypeError if it's not supposed to be implemented to support `list(datapipe)`."""
def _no_op(x):
return x
class _ForkerIterDataPipe(IterDataPipe, _ContainerTemplate):
r"""
Container to hold instance-specific information on behalf of ForkerIterDataPipe.
It tracks the state of its child DataPipes, maintains the buffer, and yields the next value
as requested by the child DataPipes.
"""
def __init__(
self,
datapipe: IterDataPipe,
num_instances: int,
buffer_size: int = 1000,
copy: Optional[Literal["shallow", "deep"]] = None,
):
self.main_datapipe = datapipe
self._datapipe_iterator: Optional[Iterator[Any]] = None
self.num_instances = num_instances
self.buffer: Deque = deque()
self.buffer_size = buffer_size
if self.buffer_size < 0:
warnings.warn(
"Unlimited buffer size is set for `fork`, "
"please be aware of OOM at random places",
UserWarning,
)
if copy is None:
self.copy_fn = _no_op
elif copy == "shallow":
self.copy_fn = copymodule.copy
elif copy == "deep":
self.copy_fn = copymodule.deepcopy
else:
raise ValueError(
f"Unknown copy method `{copy}` requested, choose one of None, `shallow` or `deep`."
)
self.child_pointers: List[int] = [
0
] * num_instances # Indicate the indices of the next element to get
self.slowest_ptr = 0 # The index to read by the slowest child
self.leading_ptr = 0 # The index to read by the fastest child
self.end_ptr: Optional[int] = None # The index to stop child
self._child_stop: List[bool] = [True for _ in range(num_instances)]
def __len__(self):
return len(self.main_datapipe)
def get_next_element_by_instance(self, instance_id: int):
if self._datapipe_iterator is None and self._child_stop[instance_id]:
self._datapipe_iterator = iter(self.main_datapipe)
self._snapshot_state = _SnapshotState.Iterating
for i in range(self.num_instances):
self._child_stop[i] = False
try:
while not self._child_stop[instance_id]:
self.child_pointers[instance_id] += 1
if (
self.end_ptr is not None
and self.child_pointers[instance_id] == self.end_ptr
):
self._child_stop[instance_id] = True
break
# Use buffer
if self.buffer and self.child_pointers[instance_id] <= self.leading_ptr:
idx = self.child_pointers[instance_id] - self.slowest_ptr - 1
return_val = self.buffer[idx]
else: # Retrieve one element from main datapipe
self.leading_ptr = self.child_pointers[instance_id]
try:
return_val = next(self._datapipe_iterator) # type: ignore[arg-type]
self.buffer.append(return_val)
except StopIteration:
self._child_stop[instance_id] = True
self._datapipe_iterator = None
self.end_ptr = self.leading_ptr
continue
if self.child_pointers[instance_id] == self.slowest_ptr + 1:
new_min = min(
self.child_pointers
) # Can optimize by avoiding the call to min()
if self.slowest_ptr < new_min:
self.slowest_ptr = new_min
self.buffer.popleft()
if (
self.buffer_size >= 0
and self.leading_ptr > self.buffer_size + self.slowest_ptr
):
raise BufferError(
"ForkerIterDataPipe buffer overflow,"
+ f"buffer size {self.buffer_size} is insufficient."
)
yield self.copy_fn(return_val) # type: ignore[possibly-undefined]
finally:
self._child_stop[instance_id] = True
# Cleanup _datapipe_iterator for the case that fork exits earlier
if all(self._child_stop):
self._datapipe_iterator = None
self._cleanup()
def is_every_instance_exhausted(self) -> bool:
return self.end_ptr is not None and all(self._child_stop)
def get_length_by_instance(self, instance_id: int) -> int:
return len(self.main_datapipe)
def reset(self) -> None:
self._datapipe_iterator = None
self.buffer = deque()
self.child_pointers = [0] * self.num_instances
self.slowest_ptr = 0
self.leading_ptr = 0
self.end_ptr = None
self._child_stop = [True for _ in range(self.num_instances)]
def __getstate__(self):
state = (
self.main_datapipe,
self.num_instances,
self.buffer_size,
self.copy_fn,
self._valid_iterator_id,
self._number_of_samples_yielded,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.main_datapipe,
self.num_instances,
self.buffer_size,
self.copy_fn,
self._valid_iterator_id,
self._number_of_samples_yielded,
) = state
self._datapipe_iterator = None
self.buffer = deque()
self.child_pointers = [0] * self.num_instances
self.slowest_ptr = 0
self.leading_ptr = 0
self.end_ptr = None
self._child_stop = [True for _ in range(self.num_instances)]
def _cleanup(self):
while self.buffer:
d = self.buffer.popleft()
StreamWrapper.close_streams(d)
def __del__(self):
self._cleanup()
class _ChildDataPipe(IterDataPipe):
r"""
Iterable Datapipe that is a child of a main DataPipe.
The instance of this class will pass its instance_id to get the next value from its main DataPipe.
Note:
ChildDataPipe, like all other IterDataPipe, follows the single iterator per IterDataPipe constraint.
Since ChildDataPipes share a common buffer, when an iterator is created for one of the ChildDataPipes,
the previous iterators for all ChildDataPipes must be invalidated, with the exception when a ChildDataPipe
hasn't had an iterator created from it since the last invalidation. See the example below.
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> # Singler Iterator per IteraDataPipe Invalidation
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(10))
>>> cdp1, cdp2 = source_dp.fork(num_instances=2)
>>> it1, it2 = iter(cdp1), iter(cdp2)
>>> it3 = iter(cdp1)
>>> # The line above invalidates `it1` and `it2`, and resets `ForkerIterDataPipe`.
>>> it4 = iter(cdp2)
>>> # The line above doesn't invalidate `it3`, because an iterator for `cdp2` hasn't been created since
>>> # the last invalidation.
Args:
main_datapipe: Main DataPipe with a method 'get_next_element_by_instance(instance_id)'
instance_id: integer identifier of this instance
"""
_is_child_datapipe: bool = True
def __init__(self, main_datapipe: IterDataPipe, instance_id: int):
assert isinstance(main_datapipe, _ContainerTemplate)
self.main_datapipe: IterDataPipe = main_datapipe
self.instance_id = instance_id
def __iter__(self):
# Note that the logic behind setting iterator ID and `reset` are handled within `hook_iterator`
# We want to separate the code for reset and yield, so that 'reset' executes before __next__ is called
return self.main_datapipe.get_next_element_by_instance(self.instance_id)
def __len__(self):
return self.main_datapipe.get_length_by_instance(self.instance_id)
# This method is called by `hook_iterator` in `_typing.py`.
def _set_main_datapipe_valid_iterator_id(self) -> int:
r"""
Update the valid iterator ID for both this DataPipe object and `main_datapipe`.
`main_datapipe.reset()` is called when the ID is incremented to a new generation.
"""
# 1. First time any child iterator is created
if self.main_datapipe._valid_iterator_id is None:
self.main_datapipe._valid_iterator_id = 0 # type: ignore[attr-defined]
# 2. This instance was already in the same generation as `main_datapipe`,
# we need to increment the ID further by 1
elif self.main_datapipe._valid_iterator_id == self._valid_iterator_id: # type: ignore[has-type]
self.main_datapipe._valid_iterator_id += 1 # type: ignore[attr-defined]
# Whenever a new generation of iterator is created, the `main_datapipe` must reset
if not self.main_datapipe.is_every_instance_exhausted():
warnings.warn(
"Some child DataPipes are not exhausted when __iter__ is called. We are resetting "
"the buffer and each child DataPipe will read from the start again.",
UserWarning,
)
self.main_datapipe.reset()
# 3. Otherwise, the iterator is behind the others, so it will just need to catch up by setting
# the instance's iterator to match that of `main_datapipe`
self._valid_iterator_id = self.main_datapipe._valid_iterator_id
return self._valid_iterator_id
# This method is called by `hook_iterator` in `_typing.py`.
def _check_valid_iterator_id(self, iterator_id) -> bool:
r"""Check the valid iterator ID against that of DataPipe object and that of `main_datapipe`."""
return (
iterator_id == self._valid_iterator_id
and iterator_id == self.main_datapipe._valid_iterator_id
)
@functional_datapipe("demux")
class DemultiplexerIterDataPipe(IterDataPipe):
r"""
Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name: ``demux``).
A list of the child DataPipes is returned from this operation.
Args:
datapipe: Iterable DataPipe being filtered
num_instances: number of instances of the DataPipe to create
classifier_fn: a function that maps values to an integer within the range ``[0, num_instances - 1]`` or ``None``
drop_none: defaults to ``False``, if ``True``, the function will skip over elements classified as ``None``
buffer_size: this defines the maximum number of inputs that the buffer can hold across all child
DataPipes while waiting for their values to be yielded.
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
Examples:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def odd_or_even(n):
... return n % 2
>>> source_dp = IterableWrapper(range(5))
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even)
>>> list(dp1)
[0, 2, 4]
>>> list(dp2)
[1, 3]
>>> # It can also filter out any element that gets `None` from the `classifier_fn`
>>> def odd_or_even_no_zero(n):
... return n % 2 if n != 0 else None
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True)
>>> list(dp1)
[2, 4]
>>> list(dp2)
[1, 3]
"""
def __new__(
cls,
datapipe: IterDataPipe,
num_instances: int,
classifier_fn: Callable[[_T_co], Optional[int]],
drop_none: bool = False,
buffer_size: int = 1000,
):
if num_instances < 1:
raise ValueError(
f"Expected `num_instances` larger than 0, but {num_instances} is found"
)
_check_unpickable_fn(classifier_fn)
# When num_instances == 1, demux can be replaced by filter,
# but keep it as Demultiplexer for the sake of consistency
# like throwing Error when classification result is out of o range
container = _DemultiplexerIterDataPipe(datapipe, num_instances, classifier_fn, drop_none, buffer_size) # type: ignore[abstract]
return [_ChildDataPipe(container, i) for i in range(num_instances)]
class _DemultiplexerIterDataPipe(IterDataPipe, _ContainerTemplate):
r"""
Container to hold instance-specific information on behalf of DemultiplexerIterDataPipe.
It tracks the state of its child DataPipes, maintains the buffer, classifies and yields the next correct value
as requested by the child DataPipes.
"""
def __init__(
self,
datapipe: IterDataPipe[_T_co],
num_instances: int,
classifier_fn: Callable[[_T_co], Optional[int]],
drop_none: bool,
buffer_size: int,
):
self.main_datapipe = datapipe
self._datapipe_iterator: Optional[Iterator[Any]] = None
self.num_instances = num_instances
self.buffer_size = buffer_size
if self.buffer_size < 0:
warnings.warn(
"Unlimited buffer size is set for `demux`, "
"please be aware of OOM at random places",
UserWarning,
)
self.current_buffer_usage = 0
self.child_buffers: List[Deque[_T_co]] = [deque() for _ in range(num_instances)]
self.classifier_fn = classifier_fn
self.drop_none = drop_none
self.main_datapipe_exhausted = False
self._child_stop: List[bool] = [True for _ in range(num_instances)]
def _find_next(self, instance_id: int) -> _T_co: # type: ignore[type-var]
while True:
if self.main_datapipe_exhausted or self._child_stop[instance_id]:
raise StopIteration
if self._datapipe_iterator is None:
raise ValueError(
"_datapipe_iterator has not been set, likely because this private method is called directly "
"without invoking get_next_element_by_instance() first."
)
value = next(self._datapipe_iterator)
classification = self.classifier_fn(value)
if classification is None and self.drop_none:
StreamWrapper.close_streams(value)
continue
if (
classification is None
or classification >= self.num_instances
or classification < 0
):
raise ValueError(
f"Output of the classification fn should be between 0 and {self.num_instances - 1}. "
+ f"{classification} is returned."
)
if classification == instance_id:
return value
self.child_buffers[classification].append(value)
self.current_buffer_usage += 1
if self.buffer_size >= 0 and self.current_buffer_usage > self.buffer_size:
raise BufferError(
f"DemultiplexerIterDataPipe buffer overflow, buffer size {self.buffer_size} is insufficient."
)
def get_next_element_by_instance(self, instance_id: int):
if self._datapipe_iterator is None and self._child_stop[instance_id]:
self._datapipe_iterator = iter(self.main_datapipe)
self._snapshot_state = (
_SnapshotState.Iterating
) # This is necessary for the DataPipe to reset properly.
self.main_datapipe_exhausted = False
for i in range(self.num_instances):
self._child_stop[i] = False
try:
while not self._child_stop[instance_id]:
if self.child_buffers[instance_id]:
self.current_buffer_usage -= 1
yield self.child_buffers[instance_id].popleft()
else:
try:
yield self._find_next(instance_id)
except StopIteration:
self._child_stop[instance_id] = True
self.main_datapipe_exhausted = True
self._datapipe_iterator = None
finally:
self._child_stop[instance_id] = True
# Cleanup _datapipe_iterator for the case that demux exits earlier
if all(self._child_stop):
self._datapipe_iterator = None
if self.child_buffers[instance_id]:
self._cleanup(instance_id)
def is_every_instance_exhausted(self) -> bool:
return self.main_datapipe_exhausted and all(self._child_stop)
def get_length_by_instance(self, instance_id: int) -> int:
raise TypeError
def reset(self) -> None:
self._datapipe_iterator = None
self.current_buffer_usage = 0
self.child_buffers = [deque() for _ in range(self.num_instances)]
self._child_stop = [True for _ in range(self.num_instances)]
self.main_datapipe_exhausted = False
def __getstate__(self):
state = (
self.main_datapipe,
self.num_instances,
self.buffer_size,
self.classifier_fn,
self.drop_none,
self._valid_iterator_id,
self._number_of_samples_yielded,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.main_datapipe,
self.num_instances,
self.buffer_size,
self.classifier_fn,
self.drop_none,
self._valid_iterator_id,
self._number_of_samples_yielded,
) = state
self._datapipe_iterator = None
self.current_buffer_usage = 0
self.child_buffers = [deque() for _ in range(self.num_instances)]
self._child_stop = [True for _ in range(self.num_instances)]
self.main_datapipe_exhausted = False
def _cleanup(self, instance_id: Optional[int] = None):
ids = (
range(self.num_instances)
if instance_id is None
else [
instance_id,
]
)
for i in ids:
q = self.child_buffers[i]
while q:
d = q.popleft()
StreamWrapper.close_streams(d)
def __del__(self):
self._cleanup()
@functional_datapipe("mux")
class MultiplexerIterDataPipe(IterDataPipe):
r"""
Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux``).
As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration,
and so on. It ends when the shortest input DataPipe is exhausted.
Args:
datapipes: Iterable DataPipes that will take turn to yield their elements, until the shortest DataPipe is exhausted
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.mux(dp2, dp3))
[0, 10, 20, 1, 11, 21, 2, 12, 22]
"""
def __init__(self, *datapipes):
self.datapipes = datapipes
self.buffer: List = (
[]
) # Store values to be yielded only when every iterator provides one
def __iter__(self):
iterators = [iter(x) for x in self.datapipes]
while len(iterators):
for it in iterators:
try:
value = next(it)
self.buffer.append(value)
except StopIteration:
self.buffer.clear()
return
yield from self.buffer
self.buffer.clear()
def __len__(self):
if all(isinstance(dp, Sized) for dp in self.datapipes):
return min(len(dp) for dp in self.datapipes) * len(self.datapipes)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
def reset(self) -> None:
self.buffer = []
def __getstate__(self):
state = (
self.datapipes,
self._valid_iterator_id,
self._number_of_samples_yielded,
)
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __setstate__(self, state):
(
self.datapipes,
self._valid_iterator_id,
self._number_of_samples_yielded,
) = state
self.buffer = []
def __del__(self):
self.buffer.clear()
@functional_datapipe("zip")
class ZipperIterDataPipe(IterDataPipe[Tuple[_T_co]]):
r"""
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
The output is stopped as soon as the shortest input DataPipe is exhausted.
Args:
*datapipes: Iterable DataPipes being aggregated
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.zip(dp2, dp3))
[(0, 10, 20), (1, 11, 21), (2, 12, 22), (3, 13, 23), (4, 14, 24)]
"""
datapipes: Tuple[IterDataPipe]
def __init__(self, *datapipes: IterDataPipe):
if not all(isinstance(dp, IterDataPipe) for dp in datapipes):
raise TypeError(
"All inputs are required to be `IterDataPipe` " "for `ZipIterDataPipe`."
)
super().__init__()
self.datapipes = datapipes # type: ignore[assignment]
def __iter__(self) -> Iterator[Tuple[_T_co]]:
iterators = [iter(datapipe) for datapipe in self.datapipes]
yield from zip(*iterators)
def __len__(self) -> int:
if all(isinstance(dp, Sized) for dp in self.datapipes):
return min(len(dp) for dp in self.datapipes)
else:
raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
|