File: streamreader.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (43 lines) | stat: -rw-r--r-- 1,429 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# mypy: allow-untyped-defs
from typing import Tuple

from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.datapipe import IterDataPipe


__all__ = ["StreamReaderIterDataPipe"]


@functional_datapipe("read_from_stream")
class StreamReaderIterDataPipe(IterDataPipe[Tuple[str, bytes]]):
    r"""
    Given IO streams and their label names, yield bytes with label name as tuple.

    (functional name: ``read_from_stream``).

    Args:
        datapipe: Iterable DataPipe provides label/URL and byte stream
        chunk: Number of bytes to be read from stream per iteration.
            If ``None``, all bytes will be read until the EOF.

    Example:
        >>> # xdoctest: +SKIP
        >>> from torchdata.datapipes.iter import IterableWrapper, StreamReader
        >>> from io import StringIO
        >>> dp = IterableWrapper([("alphabet", StringIO("abcde"))])
        >>> list(StreamReader(dp, chunk=1))
        [('alphabet', 'a'), ('alphabet', 'b'), ('alphabet', 'c'), ('alphabet', 'd'), ('alphabet', 'e')]
    """

    def __init__(self, datapipe, chunk=None):
        self.datapipe = datapipe
        self.chunk = chunk

    def __iter__(self):
        for furl, stream in self.datapipe:
            while True:
                d = stream.read(self.chunk)
                if not d:
                    stream.close()
                    break
                yield (furl, d)