File: hipify_python.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1175 lines) | stat: -rwxr-xr-x 46,975 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
#!/usr/bin/env python3
# mypy: allow-untyped-defs
""" The Python Hipify script.
##
# Copyright (c) 2015-2016 Advanced Micro Devices, Inc. All rights reserved.
#               2017-2018 Advanced Micro Devices, Inc. and
#                         Facebook Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
import argparse
import fnmatch
import re
import shutil
import sys
import os

from . import constants
from .cuda_to_hip_mappings import CUDA_TO_HIP_MAPPINGS
from .cuda_to_hip_mappings import MATH_TRANSPILATIONS

from typing import Dict, List, Iterator, Optional
from collections.abc import Mapping, Iterable
from enum import Enum
import functools
import hashlib

class CurrentState(Enum):
    INITIALIZED = 1
    DONE = 2

class HipifyResult:
    def __init__(self, current_state, hipified_path):
        self.current_state = current_state
        self.hipified_path = hipified_path
        self.status = ""

    def __str__(self):
        return (f"HipifyResult:: current_state: {self.current_state}, hipified_path : {self.hipified_path}, status: {self.status}")

HipifyFinalResult = Dict[str, HipifyResult]
HIPIFY_C_BREADCRUMB = "// !!! This is a file automatically generated by hipify!!!\n"
HIPIFY_FINAL_RESULT: HipifyFinalResult = {}

# Hardcode the PyTorch template map
"""This dictionary provides the mapping from PyTorch kernel template types
to their actual types."""
PYTORCH_TEMPLATE_MAP = {"Dtype": "scalar_t", "T": "scalar_t"}

__all__ = ['InputError', 'openf', 'bcolors', 'GeneratedFileCleaner', 'match_extensions', 'matched_files_iter',
           'preprocess_file_and_save_result', 'compute_stats', 'add_dim3', 'processKernelLaunches', 'find_closure_group',
           'find_bracket_group', 'find_parentheses_group', 'replace_math_functions', 'hip_header_magic', 'replace_extern_shared',
           'get_hip_file_path', 'is_out_of_place', 'is_pytorch_file', 'is_cusparse_file', 'is_special_file', 'is_caffe2_gpu_file',
           'is_caffe2_gpu_file', 'Trie', 'preprocessor', 'file_specific_replacement', 'file_add_header',
           'fix_static_global_kernels', 'extract_arguments', 'str2bool', 'CurrentState', 'HipifyResult', 'hipify']


class InputError(Exception):
    # Exception raised for errors in the input.

    def __init__(self, message):
        super().__init__(message)
        self.message = message

    def __str__(self):
        return f"Input error: {self.message}"


def openf(filename, mode):
    return open(filename, mode, errors='ignore')


# Color coding for printing
class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'


# To the programmer, the output of hipify most likely are intermediates.
# This class allows users of hipify to ask for a cleanup by running the
# hipify and compilation in a with instantiating this context manager class
# with keep_intermediates=False.
# The main usecase is the cpp_extensions, specifically the load method.
# It is a good idea to keep intermediates (in case of errors or to
# not recompile unchanged files), but in cases where you don't want to
# keep them (e.g. in the CI), this can be used to remove files.
class GeneratedFileCleaner:
    """Context Manager to clean up generated files"""
    def __init__(self, keep_intermediates=False):
        self.keep_intermediates = keep_intermediates
        self.files_to_clean = set()
        self.dirs_to_clean = []

    def __enter__(self):
        return self

    def open(self, fn, *args, **kwargs):
        if not os.path.exists(fn):
            self.files_to_clean.add(os.path.abspath(fn))
        return open(fn, *args, **kwargs)

    def makedirs(self, dn, exist_ok=False):
        parent, n = os.path.split(dn)
        if not n:
            parent, n = os.path.split(parent)
        if parent and n and not os.path.exists(parent):
            self.makedirs(parent, exist_ok=True)
        if not os.path.isdir(dn) or not exist_ok:
            os.mkdir(dn)
            self.dirs_to_clean.append(os.path.abspath(dn))

    def __exit__(self, type, value, traceback):
        if not self.keep_intermediates:
            for f in self.files_to_clean:
                os.unlink(f)
            for d in self.dirs_to_clean[::-1]:
                os.rmdir(d)


# Follow UNIX convention for paths to use '/' instead of '\\' on Windows
def _to_unix_path(path: str) -> str:
    return path.replace(os.sep, '/')

def match_extensions(filename: str, extensions: Iterable) -> bool:
    """Helper method to see if filename ends with certain extension"""
    return any(filename.endswith(e) for e in extensions)


def _fnmatch(filepath, patterns):
    return any(fnmatch.fnmatch(filepath, pattern) for pattern in patterns)


def matched_files_iter(
        root_path: str,
        includes: Iterable = (),
        ignores: Iterable = (),
        extensions: Iterable = (),
        out_of_place_only: bool = False,
        is_pytorch_extension: bool = False) -> Iterator[str]:

    exact_matches = set(includes)

    # This is a very rough heuristic; really, we want to avoid scanning
    # any file which is not checked into source control, but this script
    # needs to work even if you're in a Git or Hg checkout, so easier to
    # just block the biggest time sinks that won't matter in the
    # end.
    for (abs_dirpath, dirs, filenames) in os.walk(root_path, topdown=True):
        rel_dirpath = os.path.relpath(abs_dirpath, root_path)
        if rel_dirpath == '.':
            # Blah blah blah O(n) blah blah
            if ".git" in dirs:
                dirs.remove(".git")
            if "build" in dirs:
                dirs.remove("build")
            if "third_party" in dirs:
                dirs.remove("third_party")
                dirs.append("third_party/nvfuser")
        for filename in filenames:
            filepath = _to_unix_path(os.path.join(abs_dirpath, filename))
            rel_filepath = _to_unix_path(os.path.join(rel_dirpath, filename))
            # We respect extensions, UNLESS you wrote the entire
            # filename verbatim, in which case we always accept it
            if (
                _fnmatch(filepath, includes)
                and (not _fnmatch(filepath, ignores))
                and (match_extensions(filepath, extensions) or filepath in exact_matches)
            ):
                if not is_pytorch_extension:  # for pytorch extensions, consider all files
                    if not is_pytorch_file(rel_filepath) and not is_caffe2_gpu_file(rel_filepath):
                        continue
                    if out_of_place_only and not is_out_of_place(rel_filepath):
                        continue
                yield filepath


def preprocess_file_and_save_result(
        output_directory: str,
        filepath: str,
        all_files: Iterable,
        header_include_dirs: Iterable,
        stats: Dict[str, List],
        hip_clang_launch: bool,
        is_pytorch_extension: bool,
        clean_ctx: GeneratedFileCleaner,
        show_progress: bool) -> None:
    fin_path = os.path.abspath(os.path.join(output_directory, filepath))
    hipify_result = HipifyResult(current_state=CurrentState.INITIALIZED, hipified_path=fin_path)
    HIPIFY_FINAL_RESULT[fin_path] = hipify_result
    result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats,
                          hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)

    # Show what happened
    if show_progress and "ignored" not in result.status:
        print(
            fin_path, "->",
            result.hipified_path, result.status, flush=True)

    HIPIFY_FINAL_RESULT[fin_path] = result


def compute_stats(stats):
    unsupported_calls = {cuda_call for (cuda_call, _filepath) in stats["unsupported_calls"]}

    # Print the number of unsupported calls
    print(f"Total number of unsupported CUDA function calls: {len(unsupported_calls):d}")

    # Print the list of unsupported calls
    print(", ".join(unsupported_calls))

    # Print the number of kernel launches
    print(f"\nTotal number of replaced kernel launches: {len(stats['kernel_launches']):d}")


def add_dim3(kernel_string, cuda_kernel):
    '''adds dim3() to the second and third arguments in the kernel launch'''
    count = 0
    closure = 0
    kernel_string = kernel_string.replace("<<<", "").replace(">>>", "")
    arg_locs: List[Dict[str, int]] = [{} for _ in range(2)]
    arg_locs[count]['start'] = 0
    for ind, c in enumerate(kernel_string):
        if count > 1:
            break
        if c == "(":
            closure += 1
        elif c == ")":
            closure -= 1
        if (c == "," or ind == len(kernel_string) - 1) and closure == 0:
            arg_locs[count]['end'] = ind + (c != ",")
            count += 1
            if count < 2:
                arg_locs[count]['start'] = ind + 1

    first_arg_raw = kernel_string[arg_locs[0]['start']:arg_locs[0]['end'] + 1]
    second_arg_raw = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']]

    first_arg_clean = kernel_string[arg_locs[0]['start']:arg_locs[0]['end']].replace("\n", "").strip(" ")
    second_arg_clean = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']].replace("\n", "").strip(" ")

    first_arg_dim3 = f"dim3({first_arg_clean})"
    second_arg_dim3 = f"dim3({second_arg_clean})"

    first_arg_raw_dim3 = first_arg_raw.replace(first_arg_clean, first_arg_dim3)
    second_arg_raw_dim3 = second_arg_raw.replace(second_arg_clean, second_arg_dim3)
    cuda_kernel = cuda_kernel.replace(first_arg_raw + second_arg_raw, first_arg_raw_dim3 + second_arg_raw_dim3)
    return cuda_kernel


RE_KERNEL_LAUNCH = re.compile(r'([ ]+)(detail?)::[ ]+\\\n[ ]+')


def processKernelLaunches(string, stats):
    """ Replace the CUDA style Kernel launches with the HIP style kernel launches."""
    # Concat the namespace with the kernel names. (Find cleaner way of doing this later).
    string = RE_KERNEL_LAUNCH.sub(lambda inp: f"{inp.group(1)}{inp.group(2)}::", string)

    def grab_method_and_template(in_kernel):
        # The positions for relevant kernel components.
        pos = {
            "kernel_launch": {"start": in_kernel["start"], "end": in_kernel["end"]},
            "kernel_name": {"start": -1, "end": -1},
            "template": {"start": -1, "end": -1}
        }

        # Count for balancing template
        count = {"<>": 0}

        # Status for whether we are parsing a certain item.
        START = 0
        AT_TEMPLATE = 1
        AFTER_TEMPLATE = 2
        AT_KERNEL_NAME = 3

        status = START

        # Parse the string character by character
        for i in range(pos["kernel_launch"]["start"] - 1, -1, -1):
            char = string[i]

            # Handle Templating Arguments
            if status in (START, AT_TEMPLATE):
                if char == ">":
                    if status == START:
                        status = AT_TEMPLATE
                        pos["template"]["end"] = i
                    count["<>"] += 1

                if char == "<":
                    count["<>"] -= 1
                    if count["<>"] == 0 and (status == AT_TEMPLATE):
                        pos["template"]["start"] = i
                        status = AFTER_TEMPLATE

            # Handle Kernel Name
            if status != AT_TEMPLATE:
                if string[i].isalnum() or string[i] in {'(', ')', '_', ':', '#'}:
                    if status != AT_KERNEL_NAME:
                        status = AT_KERNEL_NAME
                        pos["kernel_name"]["end"] = i

                    # Case: Kernel name starts the string.
                    if i == 0:
                        pos["kernel_name"]["start"] = 0

                        # Finished
                        return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]

                else:
                    # Potential ending point if we're already traversing a kernel's name.
                    if status == AT_KERNEL_NAME:
                        pos["kernel_name"]["start"] = i

                        # Finished
                        return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]

    def find_kernel_bounds(string):
        """Finds the starting and ending points for all kernel launches in the string."""
        kernel_end = 0
        kernel_positions = []

        # Continue until we cannot find any more kernels anymore.
        while string.find("<<<", kernel_end) != -1:
            # Get kernel starting position (starting from the previous ending point)
            kernel_start = string.find("<<<", kernel_end)

            # Get kernel ending position (adjust end point past the >>>)
            kernel_end = string.find(">>>", kernel_start) + 3
            if kernel_end <= 0:
                raise InputError("no kernel end found")

            # Add to list of traversed kernels
            kernel_positions.append({"start": kernel_start, "end": kernel_end,
                                     "group": string[kernel_start: kernel_end]})

        return kernel_positions

    # Replace comments and string literals from the code so that find_kernel_bounds does not
    # wrongly capture kernels in comments and string literals.
    # This function replaces them with "x" to keep positions.
    def mask_comments(string):
        in_comment = ''
        prev_c = ''
        new_string = ''
        for c in string:
            if in_comment == '':
                # Outside comments
                if c == '/' and prev_c == '/':
                    in_comment = '//'
                elif c == '*' and prev_c == '/':
                    in_comment = '/*'
                elif c == '"' and prev_c != '\\' and prev_c != "'":
                    in_comment = '"'
            elif in_comment == '//':
                # In // xxx
                if c == '\r' or c == '\n':
                    in_comment = ''
            elif in_comment == '/*':
                # In /* xxx */
                if c == '/' and prev_c == '*':
                    in_comment = ''
            elif in_comment == '"':
                # In ""
                if c == '"' and prev_c != '\\':
                    in_comment = ''
            prev_c = c
            if in_comment == '':
                new_string += c
            else:
                new_string += 'x'
        return new_string

    # Grab positional ranges of all kernel launches
    get_kernel_positions = list(find_kernel_bounds(mask_comments(string)))
    output_string = string

    # Replace each CUDA kernel with a HIP kernel.
    for kernel in get_kernel_positions:
        # Get kernel components
        params = grab_method_and_template(kernel)

        # Find parenthesis after kernel launch
        parenthesis = string.find("(", kernel["end"])

        # Extract cuda kernel
        cuda_kernel = string[params[0]["start"]:parenthesis + 1]
        kernel_string = string[kernel['start']:kernel['end']]
        end_param_index = 0 if params[1]['end'] == -1 else 1
        kernel_name_with_template = string[params[0]['start']:params[end_param_index]['end'] + 1]
        cuda_kernel_dim3 = add_dim3(kernel_string, cuda_kernel)
        # Keep number of kernel launch params consistent (grid dims, group dims, stream, dynamic shared size)
        num_klp = len(extract_arguments(0, kernel["group"].replace("<<<", "(").replace(">>>", ")")))

        hip_kernel = "hipLaunchKernelGGL(" + cuda_kernel_dim3[0:-1].replace(
            ">>>", ", 0" * (4 - num_klp) + ">>>").replace("<<<", ", ").replace(
            ">>>", ", ").replace(kernel_name_with_template, "(" + kernel_name_with_template + ")")

        # Replace cuda kernel with hip kernel
        output_string = output_string.replace(cuda_kernel, hip_kernel)

        # Update the statistics
        stats["kernel_launches"].append(hip_kernel)

    return output_string


def find_closure_group(input_string, start, group):
    """Generalization for finding a balancing closure group

         if group = ["(", ")"], then finds the first balanced parentheses.
         if group = ["{", "}"], then finds the first balanced bracket.

    Given an input string, a starting position in the input string, and the group type,
    find_closure_group returns the positions of group[0] and group[1] as a tuple.

    Example:
        >>> find_closure_group("(hi)", 0, ["(", ")"])
        (0, 3)
    """

    inside_parenthesis = False
    parens = 0
    pos = start
    p_start, p_end = -1, -1

    while pos < len(input_string):
        if input_string[pos] == group[0]:
            if inside_parenthesis is False:
                inside_parenthesis = True
                parens = 1
                p_start = pos
            else:
                parens += 1
        elif input_string[pos] == group[1] and inside_parenthesis:
            parens -= 1

            if parens == 0:
                p_end = pos
                return p_start, p_end

        pos += 1
    return None, None


def find_bracket_group(input_string, start):
    """Finds the first balanced parantheses."""
    return find_closure_group(input_string, start, group=["{", "}"])


def find_parentheses_group(input_string, start):
    """Finds the first balanced bracket."""
    return find_closure_group(input_string, start, group=["(", ")"])


RE_ASSERT = re.compile(r"\bassert[ ]*\(")


def replace_math_functions(input_string):
    """FIXME: Temporarily replace std:: invocations of math functions
        with non-std:: versions to prevent linker errors NOTE: This
        can lead to correctness issues when running tests, since the
        correct version of the math function (exp/expf) might not get
        called.  Plan is to remove this function once HIP supports
        std:: math function calls inside device code

    """
    output_string = input_string
    for func in MATH_TRANSPILATIONS:
        output_string = output_string.replace(fr'{func}(', f'{MATH_TRANSPILATIONS[func]}(')

    return output_string


RE_SYNCTHREADS = re.compile(r":?:?\b(__syncthreads)\b(\w*\()")


def hip_header_magic(input_string):
    """If the file makes kernel builtin calls and does not include the cuda_runtime.h header,
    then automatically add an #include to match the "magic" includes provided by NVCC.
    TODO:
        Update logic to ignore cases where the cuda_runtime.h is included by another file.
    """

    # Copy the input.
    output_string = input_string

    # Check if one of the following headers is already included.
    headers = ["hip/hip_runtime.h", "hip/hip_runtime_api.h"]
    if any(re.search(fr'#include ("{ext}"|<{ext}>)', output_string) for ext in headers):
        return output_string

    # Rough logic to detect if we're inside device code
    hasDeviceLogic: int
    hasDeviceLogic = "hipLaunchKernelGGL" in output_string
    hasDeviceLogic += "__global__" in output_string
    hasDeviceLogic += "__shared__" in output_string
    hasDeviceLogic += RE_SYNCTHREADS.search(output_string) is not None

    # If device logic found, provide the necessary header.
    if hasDeviceLogic:
        output_string = '#include "hip/hip_runtime.h"\n' + input_string

    return output_string


RE_EXTERN_SHARED = re.compile(r"extern\s+([\w\(\)]+)?\s*__shared__\s+([\w:<>\s]+)\s+(\w+)\s*\[\s*\]\s*;")


def replace_extern_shared(input_string):
    """Match extern __shared__ type foo[]; syntax and use HIP_DYNAMIC_SHARED() MACRO instead.
       https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__
    Example:
        "extern __shared__ char smemChar[];" => "HIP_DYNAMIC_SHARED( char, smemChar)"
        "extern __shared__ unsigned char smem[];" => "HIP_DYNAMIC_SHARED( unsigned char, my_smem)"
    """
    output_string = input_string
    output_string = RE_EXTERN_SHARED.sub(
        lambda inp: f"HIP_DYNAMIC_SHARED({inp.group(1) or ''} {inp.group(2)}, {inp.group(3)})", output_string)

    return output_string


def get_hip_file_path(rel_filepath, is_pytorch_extension=False):
    """
    Returns the new name of the hipified file
    """
    # At the moment, some PyTorch source files are HIPified in place.  The predicate
    # is_out_of_place tells us if this is the case or not.
    assert not os.path.isabs(rel_filepath)
    if not is_pytorch_extension and not is_out_of_place(rel_filepath):
        return rel_filepath

    dirpath, filename = os.path.split(rel_filepath)
    root, ext = os.path.splitext(filename)

    # Here's the plan:
    #
    # In general, we need to disambiguate the HIPified filename so that
    # it gets a different name from the original filename, so
    # that we don't overwrite the original file
    #
    # There's a lot of different naming conventions across PyTorch
    # and Caffe2, but the general recipe is to convert occurrences
    # of cuda/gpu to hip, and add hip if there are no occurrences
    # of cuda/gpu anywhere.
    #
    # Concretely, we do the following:
    #
    #   - If there is a directory component named "cuda", replace
    #     it with "hip", AND
    #
    #   - If the file name contains "CUDA", replace it with "HIP", AND
    #
    #   - ALWAYS replace '.cu' with '.hip', because those files
    #     contain CUDA kernels that needs to be hipified and processed with
    #     hip compiler
    #
    #   - If we are not hipifying a PyTorch extension, and the parent
    #     directory name did not change as a result of the above
    #     transformations, insert "hip" in the file path
    #     as the direct parent folder of the file
    #
    #   - If we are hipifying a PyTorch extension, and the parent directory
    #     name as well as the filename (incl. extension) did not change as
    #     a result of the above transformations, insert "_hip" in the filename
    #
    # This isn't set in stone; we might adjust this to support other
    # naming conventions.

    if ext == '.cu':
        ext = '.hip'

    orig_filename = filename
    orig_dirpath = dirpath

    dirpath = dirpath.replace('cuda', 'hip')
    dirpath = dirpath.replace('CUDA', 'HIP')
    dirpath = dirpath.replace('THC', 'THH')

    root = root.replace('cuda', 'hip')
    root = root.replace('CUDA', 'HIP')
    # Special case to handle caffe2/core/THCCachingAllocator
    if dirpath != "caffe2/core":
        root = root.replace('THC', 'THH')

    if not is_pytorch_extension and dirpath == orig_dirpath:
        dirpath = os.path.join(dirpath, 'hip')

    if is_pytorch_extension and dirpath == orig_dirpath and (root + ext) == orig_filename:
        root = root + "_hip"

    return os.path.join(dirpath, root + ext)


def is_out_of_place(rel_filepath):
    assert not os.path.isabs(rel_filepath)
    if rel_filepath.startswith("torch/"):
        return False
    if rel_filepath.startswith("third_party/nvfuser/"):
        return False
    if rel_filepath.startswith("tools/autograd/templates/"):
        return False
    return True


# Keep this synchronized with includes/ignores in build_amd.py
def is_pytorch_file(rel_filepath):
    assert not os.path.isabs(rel_filepath)
    if rel_filepath.startswith("aten/"):
        if rel_filepath.startswith("aten/src/ATen/core/"):
            return False
        return True
    if rel_filepath.startswith("torch/"):
        return True
    if rel_filepath.startswith("third_party/nvfuser/"):
        return True
    if rel_filepath.startswith("tools/autograd/templates/"):
        return True
    return False


def is_cusparse_file(rel_filepath):
    if is_pytorch_file(rel_filepath):
        return "sparse" in rel_filepath.lower()
    return False


def is_special_file(rel_filepath):
    if is_pytorch_file(rel_filepath):
        if "sparse" in rel_filepath.lower():
            return True
        elif "linalg" in rel_filepath.lower():
            if "batchlinearalgebralibblas" in rel_filepath.lower():
                return False  # don't use "special" mappings for this specific linalg cublas file
            return True
    return False

def is_caffe2_gpu_file(rel_filepath):
    assert not os.path.isabs(rel_filepath)
    if rel_filepath.startswith("c10/cuda"):
        return True
    filename = os.path.basename(rel_filepath)
    _, ext = os.path.splitext(filename)
    return ('gpu' in filename or ext in ['.cu', '.cuh']) and ('cudnn' not in filename)

class TrieNode:
    """A Trie node whose children are represented as a directory of char: TrieNode.
       A special char '' represents end of word
    """

    def __init__(self):
        self.children = {}

class Trie:
    """Creates a Trie out of a list of words. The trie can be exported to a Regex pattern.
    The corresponding Regex should match much faster than a simple Regex union."""

    def __init__(self):
        """Initialize the trie with an empty root node."""
        self.root = TrieNode()
        self._hash = hashlib.md5()
        self._digest = self._hash.digest()

    def add(self, word):
        """Add a word to the Trie. """
        self._hash.update(word.encode())
        self._digest = self._hash.digest()
        node = self.root

        for char in word:
            node.children.setdefault(char, TrieNode())
            node = node.children[char]
        node.children[''] = True    # Mark the end of the word

    def dump(self):
        """Return the root node of Trie. """
        return self.root

    def quote(self, char):
        """ Escape a char for regex. """
        return re.escape(char)

    def search(self, word):
        """Search whether word is present in the Trie.
        Returns True if yes, else return False"""
        node = self.root
        for char in word:
            if char in node.children:
                node = node.children[char]
            else:
                return False

        # make sure to check the end-of-word marker present
        return '' in node.children

    @functools.lru_cache  # noqa: B019
    def _pattern(self, root, digest):
        """Convert a Trie into a regular expression pattern

        Memoized on the hash digest of the trie, which is built incrementally
        during add().
        """
        node = root

        if "" in node.children and len(node.children.keys()) == 1:
            return None

        alt = []    # store alternative patterns
        cc = []     # store char to char classes
        q = 0       # for node representing the end of word
        for char in sorted(node.children.keys()):
            if isinstance(node.children[char], TrieNode):
                try:
                    recurse = self._pattern(node.children[char], self._digest)
                    alt.append(self.quote(char) + recurse)
                except Exception:
                    cc.append(self.quote(char))
            else:
                q = 1
        cconly = not len(alt) > 0

        if len(cc) > 0:
            if len(cc) == 1:
                alt.append(cc[0])
            else:
                alt.append('[' + ''.join(cc) + ']')

        if len(alt) == 1:
            result = alt[0]
        else:
            result = "(?:" + "|".join(alt) + ")"

        if q:
            if cconly:
                result += "?"
            else:
                result = f"(?:{result})?"
        return result

    def pattern(self):
        """Export the Trie to a regex pattern."""
        return self._pattern(self.root, self._digest)

    def export_to_regex(self):
        """Export the Trie to a regex pattern."""
        return self._pattern(self.root, self._digest)

CAFFE2_TRIE = Trie()
CAFFE2_MAP = {}
PYTORCH_TRIE = Trie()
PYTORCH_MAP: Dict[str, object] = {}

# In PyTorch, we map cuBLAS->rocBLAS and cuSPARSE->hipSPARSE. Note the prefix, roc versus hip.
# The 'hip' APIs offer a more direct CUDA-friendly mapping, but calling rocBLAS directly has better performance.
# Unfortunately, the roc* types and hip* types differ, i.e., rocblas_float_complex versus hipComplex.
# In the case of SPARSE, we must use the hip types for complex instead of the roc types,
# but the pytorch mappings assume roc. Therefore, we create a new SPARSE mapping that has a higher priority.
# Its mappings will trigger first, and only when a miss occurs will the lower-priority pytorch mapping take place.
# When a file contains "sparse" in the filename, a mapping marked with API_SPARSE is preferred over other choices.
# Similarly, "linalg" files require rocBLAS -> hipSOLVER so they also need special handling.
PYTORCH_SPECIAL_MAP = {}

for mapping in CUDA_TO_HIP_MAPPINGS:
    assert isinstance(mapping, Mapping)
    for src, value in mapping.items():
        dst = value[0]
        meta_data = value[1:]
        if constants.API_CAFFE2 not in meta_data:
            PYTORCH_TRIE.add(src)
            # if src is already in PYTORCH_MAP and dst belongs to API_SPECIAL
            # do not overwrite PYTORCH_MAP, store dst separately
            if constants.API_SPECIAL in meta_data and PYTORCH_MAP.get(src, ""):
                PYTORCH_SPECIAL_MAP[src] = dst
            else:
                PYTORCH_MAP[src] = dst
        if constants.API_PYTORCH not in meta_data and constants.API_SPECIAL not in meta_data:
            CAFFE2_TRIE.add(src)
            CAFFE2_MAP[src] = dst
RE_CAFFE2_PREPROCESSOR = re.compile(CAFFE2_TRIE.export_to_regex())
RE_PYTORCH_PREPROCESSOR = re.compile(fr'(?<=\W)({PYTORCH_TRIE.export_to_regex()})(?=\W)')

RE_QUOTE_HEADER = re.compile(r'#include "([^"]+)"')
RE_ANGLE_HEADER = re.compile(r'#include <([^>]+)>')
RE_THC_GENERIC_FILE = re.compile(r'#define THC_GENERIC_FILE "([^"]+)"')
RE_CU_SUFFIX = re.compile(r'\.cu\b')  # be careful not to pick up .cuh

"""
Returns a HipifyResult object with the following details:
    "hipified_path" : absolute path of hipified source file
    "status"        : "ok"      if hipified file was written out
                      "skipped" if an identical hipified file already existed or hipified file couldn't be written out
                      "ignored" if the source file was a hipified file itself or not meant to be hipified
    "current_state" : CurrentState.INITIALIZED if source file is first ready to be hipified
                      CurrentState.DONE if source file is done with hipification process
"""


def preprocessor(
        output_directory: str,
        filepath: str,
        all_files: Iterable,
        header_include_dirs: Iterable,
        stats: Dict[str, List],
        hip_clang_launch: bool,
        is_pytorch_extension: bool,
        clean_ctx: GeneratedFileCleaner,
        show_progress: bool) -> HipifyResult:
    """ Executes the CUDA -> HIP conversion on the specified file. """
    fin_path = os.path.abspath(os.path.join(output_directory, filepath))
    hipify_result = HIPIFY_FINAL_RESULT[fin_path]
    if filepath not in all_files:
        hipify_result.hipified_path = None
        hipify_result.status = "[ignored, not to be hipified]"
        hipify_result.current_state = CurrentState.DONE
        return hipify_result

    rel_filepath = _to_unix_path(os.path.relpath(filepath, output_directory))

    with open(fin_path, encoding='utf-8') as fin:
        if fin.readline() == HIPIFY_C_BREADCRUMB:
            hipify_result.hipified_path = None
            hipify_result.status = "[ignored, input is hipified output]"
            hipify_result.current_state = CurrentState.DONE
            return hipify_result
        fin.seek(0)
        output_source = fin.read()

    orig_output_source = output_source

    # get_hip_file_path needs a relative path to work correctly
    fout_path = os.path.abspath(os.path.join(output_directory, get_hip_file_path(rel_filepath, is_pytorch_extension)))
    if not os.path.exists(os.path.dirname(fout_path)):
        clean_ctx.makedirs(os.path.dirname(fout_path))

    # unsupported_calls statistics reporting is broken atm
    def pt_repl(m):
        return PYTORCH_MAP[m.group(0)]

    def pt_special_repl(m):
        # checks SPECIAL map first, and if a miss occurs, falls back to pytorch mappings
        return PYTORCH_SPECIAL_MAP.get(m.group(0), pt_repl(m))


    if is_pytorch_extension:
        output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
    else:
        if is_special_file(rel_filepath):
            output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_special_repl, output_source)
        elif is_pytorch_file(rel_filepath):
            output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
        else:
            def c2_repl(m):
                return CAFFE2_MAP[m.group(0)]
            output_source = RE_CAFFE2_PREPROCESSOR.sub(c2_repl, output_source)

    # Header rewrites
    def mk_repl(templ, include_current_dir=True):
        def repl(m):
            f = m.group(1)
            filename = os.path.basename(f)
            if (
                f.startswith(("ATen/cuda",
                              "ATen/native/cuda",
                              "ATen/native/nested/cuda",
                              "ATen/native/quantized/cuda",
                              "ATen/native/sparse/cuda",
                              "ATen/native/transformers/cuda",
                              "THC/")) or
                (f.startswith("THC") and not f.startswith("THCP"))
            ):
                return templ.format(get_hip_file_path(m.group(1), is_pytorch_extension))
            # if filename is one of the files being hipified for this extension
            if (is_pytorch_extension and any(s.endswith(filename) for s in all_files)):
                header_dir = None
                header_filepath = None
                # If include_current_dir True, look first in same dir as the including source file
                if include_current_dir:
                    header_dir_to_check = os.path.dirname(fin_path)
                    header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
                    if os.path.exists(header_path_to_check):
                        header_dir = header_dir_to_check
                        header_filepath = header_path_to_check
                # If not found, look in include dirs one by one and first match wins
                if header_filepath is None:
                    for header_include_dir in header_include_dirs:
                        header_dir_to_check = os.path.join(output_directory, header_include_dir)
                        header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
                        if os.path.exists(header_path_to_check):
                            header_dir = header_dir_to_check
                            header_filepath = header_path_to_check
                # If header file not found, keep as is
                if header_filepath is None:
                    return m.group(0)
                # Hipify header file first if needed
                if header_filepath not in HIPIFY_FINAL_RESULT:
                    preprocess_file_and_save_result(output_directory,
                                                    header_filepath,
                                                    all_files, header_include_dirs, stats, hip_clang_launch,
                                                    is_pytorch_extension, clean_ctx, show_progress)
                elif header_filepath in HIPIFY_FINAL_RESULT:
                    header_result = HIPIFY_FINAL_RESULT[header_filepath]
                    if header_result.current_state == CurrentState.INITIALIZED:
                        # get_hip_file_path needs a relative path to work correctly
                        header_rel_path = os.path.relpath(header_filepath, output_directory)
                        header_fout_path = os.path.abspath(os.path.join(output_directory,
                                                                        get_hip_file_path(header_rel_path, is_pytorch_extension)))
                        header_result.hipified_path = header_fout_path
                        HIPIFY_FINAL_RESULT[header_filepath] = header_result
                        return templ.format(os.path.relpath(header_fout_path if header_fout_path is not None
                                                            else header_filepath, header_dir))
                hipified_header_filepath = HIPIFY_FINAL_RESULT[header_filepath].hipified_path
                return templ.format(os.path.relpath(hipified_header_filepath if hipified_header_filepath is not None
                                                    else header_filepath, header_dir))

            return m.group(0)
        return repl
    output_source = RE_QUOTE_HEADER.sub(mk_repl('#include "{0}"', True), output_source)
    output_source = RE_ANGLE_HEADER.sub(mk_repl('#include <{0}>', False), output_source)
    output_source = RE_THC_GENERIC_FILE.sub(mk_repl('#define THC_GENERIC_FILE "{0}"'), output_source)

    # CMakeLists.txt rewrites
    if filepath.endswith('CMakeLists.txt'):
        output_source = output_source.replace('CUDA', 'HIP')
        output_source = output_source.replace('THC', 'THH')
        output_source = RE_CU_SUFFIX.sub('.hip', output_source)

    # Perform Kernel Launch Replacements
    if not hip_clang_launch:
        output_source = processKernelLaunches(output_source, stats)

    # Replace std:: with non-std:: versions
    if (filepath.endswith((".cu", ".cuh"))) and "PowKernel" not in filepath:
        output_source = replace_math_functions(output_source)

    # Include header if device code is contained.
    output_source = hip_header_magic(output_source)

    # Replace the extern __shared__
    # NOTE: No longer needed after transition from hcc to hipclang.
    # output_source = replace_extern_shared(output_source)

    # Don't write out identical hipified files for extensions if dirpath has not changed
    if (
        is_pytorch_extension
        and orig_output_source == output_source
        and os.path.dirname(fin_path) == os.path.dirname(fout_path)
    ):
        hipify_result.hipified_path = fin_path
        hipify_result.status = "[skipped, no changes]"
        hipify_result.current_state = CurrentState.DONE
        return hipify_result

    # Add hipify breadcrumb for C-style files to avoid re-hipification
    if fin_path != fout_path and match_extensions(fin_path, (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".hpp")):
        output_source = HIPIFY_C_BREADCRUMB + output_source

    do_write = True
    if os.path.exists(fout_path):
        with open(fout_path, encoding='utf-8') as fout_old:
            do_write = fout_old.read() != output_source
    if do_write:
        try:
            with clean_ctx.open(fout_path, 'w', encoding='utf-8') as fout:
                fout.write(output_source)
            hipify_result.hipified_path = fout_path
            hipify_result.status = "[ok]"
            hipify_result.current_state = CurrentState.DONE
            return hipify_result
        except PermissionError as e:
            print(f'{bcolors.WARNING}Failed to save {fout_path} with "{e.strerror}", leaving {fin_path} unchanged.{bcolors.ENDC}',
                  file=sys.stderr)
            hipify_result.hipified_path = fin_path
            hipify_result.status = "[skipped, no permissions]"
            hipify_result.current_state = CurrentState.DONE
            return hipify_result
    else:
        hipify_result.hipified_path = fout_path
        hipify_result.status = "[skipped, already hipified]"
        hipify_result.current_state = CurrentState.DONE
        return hipify_result

def file_specific_replacement(filepath, search_string, replace_string, strict=False):
    with openf(filepath, "r+") as f:
        contents = f.read()
        if strict:
            contents = re.sub(fr'\b({re.escape(search_string)})\b', lambda x: replace_string, contents)
        else:
            contents = contents.replace(search_string, replace_string)
        f.seek(0)
        f.write(contents)
        f.truncate()


def file_add_header(filepath, header):
    with openf(filepath, "r+") as f:
        contents = f.read()
        if header[0] != "<" and header[-1] != ">":
            header = f'"{header}"'
        contents = (f'#include {header} \n') + contents
        f.seek(0)
        f.write(contents)
        f.truncate()


def fix_static_global_kernels(in_txt):
    """Static global kernels in HIP results in a compilation error."""
    in_txt = in_txt.replace(" __global__ static", "__global__")
    return in_txt


RE_INCLUDE = re.compile(r"#include .*\n")


def extract_arguments(start, string):
    """ Return the list of arguments in the upcoming function parameter closure.
        Example:
        string (input): '(blocks, threads, 0, THCState_getCurrentStream(state))'
        arguments (output):
            '[{'start': 1, 'end': 7},
            {'start': 8, 'end': 16},
            {'start': 17, 'end': 19},
            {'start': 20, 'end': 53}]'
    """

    arguments = []
    closures = {
        "<": 0,
        "(": 0
    }
    current_position = start
    argument_start_pos = current_position + 1

    # Search for final parenthesis
    while current_position < len(string):
        if string[current_position] == "(":
            closures["("] += 1
        elif string[current_position] == ")":
            closures["("] -= 1
        elif string[current_position] == "<":
            closures["<"] += 1
        elif string[current_position] == ">" and string[current_position - 1] != "-" and closures["<"] > 0:
            closures["<"] -= 1

        # Finished all arguments
        if closures["("] == 0 and closures["<"] == 0:
            # Add final argument
            arguments.append({"start": argument_start_pos, "end": current_position})
            break

        # Finished current argument
        if closures["("] == 1 and closures["<"] == 0 and string[current_position] == ",":
            arguments.append({"start": argument_start_pos, "end": current_position})
            argument_start_pos = current_position + 1

        current_position += 1

    return arguments


def str2bool(v):
    """ArgumentParser doesn't support type=bool. Thus, this helper method will convert
    from possible string types to True / False."""
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


def hipify(
    project_directory: str,
    show_detailed: bool = False,
    extensions: Iterable = (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".in", ".hpp"),
    header_extensions: Iterable = (".cuh", ".h", ".hpp"),
    output_directory: str = "",
    header_include_dirs: Iterable = (),
    includes: Iterable = ('*',),
    extra_files: Iterable = (),
    out_of_place_only: bool = False,
    ignores: Iterable = (),
    show_progress: bool = True,
    hip_clang_launch: bool = False,
    is_pytorch_extension: bool = False,
    hipify_extra_files_only: bool = False,
    clean_ctx: Optional[GeneratedFileCleaner] = None
) -> HipifyFinalResult:
    if project_directory == "":
        project_directory = os.getcwd()

    # Verify the project directory exists.
    if not os.path.exists(project_directory):
        print("The project folder specified does not exist.")
        sys.exit(1)

    # If no output directory, provide a default one.
    if not output_directory:
        project_directory.rstrip("/")
        output_directory = project_directory + "_amd"

    if project_directory != output_directory:
        includes = [include.replace(project_directory, output_directory) for include in includes]
        ignores = [ignore.replace(project_directory, output_directory) for ignore in ignores]

    # Copy from project directory to output directory if not done already.
    if not os.path.exists(output_directory):
        shutil.copytree(project_directory, output_directory)

    includes = list(map(_to_unix_path, includes))
    ignores = list(map(_to_unix_path, ignores))

    all_files = list(matched_files_iter(output_directory, includes=includes,
                                        ignores=ignores, extensions=extensions,
                                        out_of_place_only=out_of_place_only,
                                        is_pytorch_extension=is_pytorch_extension))
    all_files_set = set(all_files)
    for f in extra_files:
        if not os.path.isabs(f):
            f = os.path.join(output_directory, f)
        if f not in all_files_set:
            all_files.append(f)

    # List all files in header_include_paths to ensure they are hipified
    from pathlib import Path
    for header_include_dir in header_include_dirs:
        if os.path.isabs(header_include_dir):
            header_include_dir_path = Path(header_include_dir)
        else:
            header_include_dir_path = Path(os.path.join(output_directory, header_include_dir))
        all_files.extend(
            str(path) for path in header_include_dir_path.rglob('*') if path.is_file()
            and _fnmatch(str(path), includes)
            and (not _fnmatch(str(path), ignores))
            and match_extensions(path.name, header_extensions)
        )

    if clean_ctx is None:
        clean_ctx = GeneratedFileCleaner(keep_intermediates=True)

    # Preprocessing statistics.
    stats: Dict[str, List] = {"unsupported_calls": [], "kernel_launches": []}

    for filepath in (all_files if not hipify_extra_files_only else extra_files):
        preprocess_file_and_save_result(output_directory, filepath, all_files, header_include_dirs,
                                        stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)

    print(bcolors.OKGREEN + "Successfully preprocessed all matching files." + bcolors.ENDC, file=sys.stderr)

    # Show detailed summary
    if show_detailed:
        compute_stats(stats)

    return HIPIFY_FINAL_RESULT