File: train_regression.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (475 lines) | stat: -rw-r--r-- 17,980 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# mypy: ignore-errors

import warnings

import numpy as np
import pandas as pd  # type: ignore[import-untyped]
from scipy.stats import gmean  # type: ignore[import-untyped]
from sklearn.model_selection import train_test_split  # type: ignore[import-untyped]
from sklearn.tree import DecisionTreeRegressor  # type: ignore[import-untyped]
from train import AHTrain

from torch._inductor.autoheuristic.autoheuristic_utils import CHOICE_COL, FEEDBACK_COL


# TODO (AlnisM): Fix these warnings
warnings.filterwarnings(
    "ignore",
    message="The behavior of DataFrame concatenation with empty or all-NA entries is deprecated",
)
warnings.filterwarnings(
    "ignore",
    message="DataFrameGroupBy.apply operated on the grouping columns.",
)


class AHTrainRegressionTree(AHTrain):
    """
    This class is responsible for generating a heuristic by using data collected with AutoHeuristic. It will learn a
    regression tree that predicts a score that represents how well a specific choice will perform given an input.
    A higher score means a better choice. The heuristic will be generated in a file named <heuristic_name>.py in the
    torch/_inductor/autoheuristic/artifacts/ directory.
    """

    def __init__(self):
        super().__init__()

    def main(
        self,
        log_path,
        other_datasets,
        nrows,
        heuristic_name,
        save_dot=False,
        ranking=False,
    ):
        """
        Main function that trains a decision tree and generates a heuristic.
        """
        (df, choices, cat_feature2cats, dummy_col_2_col_val, metadata) = self.get_df(
            log_path, nrows=nrows, apply_filters=True
        )
        df_train, df_val, df_test, feature_columns = self.custom_train_test_split(df)
        datasets = {"train": df_train, "val": df_val, "test": df_test}
        self.add_real_datasets(datasets, other_datasets, cat_feature2cats)

        # We will do a grid search over these values
        # Only trying out max_depths of 5, 6, and 7 because we want to keep the tree and
        # generated code small, but smaller than 5 does not perform well enough
        max_depths = [5, 6, 7]
        min_samples_leafs = [1, 2, 5, 10]
        choice_columns = [f"{CHOICE_COL}_{choice}" for choice in choices]
        (results_df, best_model, threshold) = self.train_and_evaluate_models(
            datasets, feature_columns, choice_columns, max_depths, min_samples_leafs
        )

        # prints results for all models and datasets
        print(results_df.to_string())

        # prints results grouped by dataset
        for set_name in results_df["dataset"].unique():
            dataset_results = results_df[results_df["dataset"] == set_name]
            dataset_results = dataset_results.sort_values(by="correct")
            print(dataset_results.to_string() + "\n")

        feature_names = feature_columns + choice_columns
        self.dt_to_python(
            best_model,
            metadata,
            feature_names,
            dummy_col_2_col_val,
            heuristic_name,
            threshold,
        )

    def get_df(self, log_path, cat_feature2cats=None, nrows=None, apply_filters=False):
        """
        Parses the log file and processes the data into a dataframe that can be used for training.
        """
        (df, metadata, feature_columns, categorical_features, choices) = self.parse_log(
            log_path, nrows
        )

        def process_data(
            df,
            feature_columns,
            apply_filters,
            min_count_measurements=3,
            max_relative_std=5,
        ):
            # Calculate statistics for each input and choice combination
            def calculate_stats(group):
                count = len(group)
                mean = group[FEEDBACK_COL].mean()
                std = group[FEEDBACK_COL].std()
                relative_std = (std / mean) * 100 if mean != 0 else np.inf
                median = group[FEEDBACK_COL].median()
                return pd.Series(
                    {
                        "count": count,
                        "median_execution_time": median,
                        "relative_std": relative_std,
                    }
                )

            stats = (
                df.groupby(feature_columns + [CHOICE_COL])
                .apply(calculate_stats)
                .reset_index()
            )

            if apply_filters:
                # Remove unstables measurements
                valid_stats = stats[
                    (stats["count"] >= min_count_measurements)
                    & (stats["relative_std"] <= max_relative_std)
                ]
                # Keep only inputs with at least two valid choices
                valid_inputs = valid_stats.groupby(feature_columns).filter(
                    lambda x: len(x) >= 2
                )
            else:
                valid_inputs = stats

            # Compute the winner and ratios for each input
            def get_winner_and_speedups(group):
                mean_time = group["median_execution_time"].mean()
                winner = group.loc[group["median_execution_time"].idxmin(), CHOICE_COL]
                min_time = group["median_execution_time"].min()
                max_time = group["median_execution_time"].max()

                group["winner"] = winner
                group["speedup"] = max_time / min_time
                group["target"] = mean_time / group["median_execution_time"]

                return group[
                    feature_columns + [CHOICE_COL, "winner", "speedup", "target"]
                ]

            results = (
                valid_inputs.groupby(feature_columns)
                .apply(get_winner_and_speedups)
                .reset_index(drop=True)
            )

            return results

        results = process_data(df, feature_columns, apply_filters)
        (results, added_categorical_features) = self.add_new_features(results)
        categorical_features += added_categorical_features
        categorical_features += [CHOICE_COL]

        (
            results,
            cat_feature2cats,
            dummy_col_2_col_val,
        ) = self.handle_categorical_features(
            cat_feature2cats, categorical_features, results
        )
        return (results, choices, cat_feature2cats, dummy_col_2_col_val, metadata)

    def custom_train_test_split(
        self, df, test_size=0.2, val_size=0.25, random_state=42
    ):
        """
        Splits the dataframe into train, val, and test sets.
        Also adds other datasets, specified by the user, to the train set.
        We need to be careful, because we want to make sure that rows with the same input but different choice are
        kept in the same set, e.g.
        Rows that looks like this
        input_1,choice1,...
        input_1,choice2,...
        should be in the same set.
        """
        # We want to make sure that rows with the same input but different choice are kept in the same set
        exclude_columns = ["speedup", "winner", "target"]
        feature_columns = [
            col
            for col in df.columns
            if col not in exclude_columns and not col.startswith(CHOICE_COL + "_")
        ]
        df["input_id"] = df.groupby(feature_columns).ngroup()

        # Get unique input IDs
        unique_inputs = df["input_id"].unique()

        # Split unique inputs into train+val and test
        train_val_inputs, test_inputs = train_test_split(
            unique_inputs, test_size=test_size, random_state=random_state
        )

        # Split train+val inputs into train and val
        train_inputs, val_inputs = train_test_split(
            train_val_inputs, test_size=val_size, random_state=random_state
        )

        # Create masks for each set
        train_mask = df["input_id"].isin(train_inputs)
        val_mask = df["input_id"].isin(val_inputs)
        test_mask = df["input_id"].isin(test_inputs)

        # Split the dataframe
        df_train = df[train_mask]
        df_val = df[val_mask]
        df_test = df[test_mask]

        # Remove the temporary input_id column
        df_train = df_train.drop("input_id", axis=1)
        df_val = df_val.drop("input_id", axis=1)
        df_test = df_test.drop("input_id", axis=1)

        return df_train, df_val, df_test, feature_columns

    def train_and_evaluate_models(
        self,
        datasets,
        feature_columns,
        choice_columns,
        max_depths,
        min_samples_leafs,
        threshold=0.99,
    ):
        """
        Does a grid search over max_depths, min_samples_leafs, and returns the best model.
        """

        results = []
        df_train = datasets["train"]
        df_val = datasets["val"]

        best_model = None
        best_model_threshold = 0
        max_correct_predictions = -1
        for max_depth in max_depths:
            for min_samples_leaf in min_samples_leafs:
                print(
                    f"Evaluating max_depth={max_depth}, min_samples_leaf={min_samples_leaf}"
                )
                model = DecisionTreeRegressor(
                    random_state=42,
                    max_depth=max_depth,
                    min_samples_leaf=min_samples_leaf,
                )
                model.fit(
                    df_train[feature_columns + choice_columns], df_train["target"]
                )

                # we first compute a safe threshold: this threshold ensures that on the validation set,
                # if the heuristic returns a choice, the choice will be correct, although a high threshold
                # can lead to a lot of 'unsure' choices
                eval_result = self.evaluate_model(
                    model, df_val, feature_columns, choice_columns, threshold
                )
                safe_threshold = eval_result["wrong_max_ratio"]
                for dataset_name, dataset in datasets.items():
                    eval_result = self.evaluate_model(
                        model, dataset, feature_columns, choice_columns, safe_threshold
                    )
                    print(eval_result)
                    if dataset_name == "val":
                        eval_correct = eval_result["correct"]
                        if eval_correct > max_correct_predictions:
                            best_model = model
                            best_model_threshold = safe_threshold
                            max_correct_predictions = eval_correct
                    results.append(
                        {
                            "max_depth": max_depth,
                            "min_samples_leaf": min_samples_leaf,
                            "dataset": dataset_name,
                            "correct": eval_result["correct"],
                            "wrong": eval_result["wrong"],
                            "unsure": eval_result["unsure"],
                            "total": eval_result["total"],
                            "max_wrong_speedup": eval_result["max_wrong_speedup"],
                            "gman_wrong_speedup": eval_result["gman_wrong_speedup"],
                            "threshold": safe_threshold,
                        }
                    )

        return (pd.DataFrame(results), best_model, best_model_threshold)

    def evaluate_model(self, model, df, feature_columns, choice_columns, threshold):
        """
        Custom evaluation function that evaluates a learned decision tree.
        """

        def predict_winner(group):
            predictions = model.predict(group[feature_columns + choice_columns])

            # Find the index of the maximum prediction (best choice)
            best_choice_index = np.argmax(predictions)

            # Get the corresponding choice
            predicted_choice = (
                group[choice_columns].iloc[best_choice_index].idxmax().split("_")[-1]
            )

            # Calculate the ratio between the best and second-best prediction
            sorted_predictions = np.sort(predictions)[::-1]
            top_pred_ratio = (
                sorted_predictions[0] / sorted_predictions[1]
                if len(sorted_predictions) > 1
                else np.inf
            )

            # If the best choice is not "significantly" better than the second best choice,
            # the learned heuristic will return "unsure"
            if top_pred_ratio <= threshold:
                predicted_winner = "unsure"
            else:
                predicted_winner = predicted_choice

            actual_winner = group["winner"].iloc[0]
            is_correct = (
                predicted_winner == actual_winner
                if predicted_winner != "unsure"
                else "unsure"
            )

            return pd.Series(
                {
                    "predicted_winner": predicted_winner,
                    "ratio": top_pred_ratio,
                    "actual_winner": actual_winner,
                    "is_correct": is_correct,
                    "speedup": group["speedup"].iloc[
                        0
                    ],  # Speedup is the same for all rows in the group
                }
            )

        results = df.groupby(feature_columns).apply(predict_winner).reset_index()
        correct = (results["is_correct"].eq(True)).sum()
        unsure = (results["is_correct"] == "unsure").sum()
        wrong_results = results[results["is_correct"].eq(False)]
        wrong = len(wrong_results)

        # Calculate max and geometric mean of speedup for wrong predictions
        # Used for debugging purposes
        wrong_speedups = wrong_results["speedup"]
        max_wrong_speedup = wrong_speedups.max() if not wrong_speedups.empty else np.nan
        geo_mean_wrong_speedup = (
            gmean(wrong_speedups) if not wrong_speedups.empty else np.nan
        )
        wrong_max_ratio = wrong_results["ratio"].max()

        total = correct + wrong + unsure
        return {
            "correct": correct,
            "wrong": wrong,
            "unsure": unsure,
            "total": total,
            "max_wrong_speedup": max_wrong_speedup,
            "gman_wrong_speedup": geo_mean_wrong_speedup,
            "wrong_max_ratio": wrong_max_ratio,
        }

    def dt_to_python(
        self,
        dt,
        metadata,
        feature_names,
        dummy_col_2_col_val,
        heuristic_name,
        threshold,
        unsafe_leaves=None,
    ):
        tree_ = dt.tree_
        feature_name = [
            feature_names[i] if i != -1 else "undefined!" for i in tree_.feature
        ]

        lines = []
        device_capa = metadata["device_capa"]
        device_capa_str = f"({device_capa[0]}, {device_capa[1]})"
        opt_name = metadata["name"]
        lines.append(
            self.codegen_boilerplate(
                heuristic_name,
                opt_name,
                threshold,
                metadata["shared_memory"],
                device_capa_str,
                dt,
            )
        )
        fn_def = f"\n    {self.gen_predict_fn_def()}"
        lines.append(fn_def)

        def dt_to_python(node, depth):
            indent = "    " * (depth + 1)
            if tree_.feature[node] != -2:
                name = feature_name[node]
                threshold = tree_.threshold[node]
                if name in dummy_col_2_col_val:
                    (orig_name, value) = dummy_col_2_col_val[name]
                    predicate = f"{indent}if str(context.get_value('{orig_name}')) != '{value}':"
                    assert (
                        threshold == 0.5
                    ), f"expected threshold to be 0.5 but is {threshold}"
                else:
                    predicate = (
                        f"{indent}if context.get_value('{name}') <= {threshold}:"
                    )
                lines.append(predicate)
                dt_to_python(tree_.children_left[node], depth + 1)
                lines.append(f"{indent}else:")
                dt_to_python(tree_.children_right[node], depth + 1)
            else:
                lines.append(self.handle_leaf(tree_, node, indent, unsafe_leaves))

        dt_to_python(0, 1)

        self.write_heuristic_to_file(lines, heuristic_name)

    def handle_leaf(self, tree_, node, indent, unsafe_leaves):
        """
        Generates the code for a leaf node. This is just the value predicted by the regression tree.
        """
        value = tree_.value[node][0][0]
        return f"{indent}return {str(value)}"

    def gen_predict_fn_def(self):
        return "def predict(self, context: AHContext) -> float:"

    def codegen_boilerplate(
        self, heuristic_name, opt_name, threshold, shared_memory, device_capa, classes
    ):
        """
        Generates the boilerplate code for the generated heuristic. This includes things like imports, class definition,
        etc.
        """

        boiler_plate = f"""# flake8: noqa: B950
# fmt: off
# This file was generated by AutoHeuristic. Do not modify it manually!
# To regenerate this file, take a look at the steps in the README.md file inside torchgen/_autoheuristic/{opt_name}/
from torch._inductor.autoheuristic.autoheuristic_utils import AHContext, AHMetadata, Choice, CHOICE_COL
from torch._inductor.autoheuristic.learnedheuristic_interface import (
    LearnedHeuristicRegression,
)


class {heuristic_name}(LearnedHeuristicRegression):

    def __init__(self) -> None:
        pass

{self.gen_precondition(opt_name, shared_memory, device_capa)}

    def get_feedback(self, context: AHContext, choice: Choice) -> float:
        context.context_dict[CHOICE_COL] = choice
        return self.predict(context)

    def get_confidence_threshold(self) -> float:
        return {threshold}

    def get_name(self) -> str:
        return '{opt_name}'"""
        return boiler_plate


if __name__ == "__main__":
    train = AHTrain()
    train.generate_heuristic()