1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
# mypy: ignore-errors
import warnings
import numpy as np
import pandas as pd # type: ignore[import-untyped]
from scipy.stats import gmean # type: ignore[import-untyped]
from sklearn.model_selection import train_test_split # type: ignore[import-untyped]
from sklearn.tree import DecisionTreeRegressor # type: ignore[import-untyped]
from train import AHTrain
from torch._inductor.autoheuristic.autoheuristic_utils import CHOICE_COL, FEEDBACK_COL
# TODO (AlnisM): Fix these warnings
warnings.filterwarnings(
"ignore",
message="The behavior of DataFrame concatenation with empty or all-NA entries is deprecated",
)
warnings.filterwarnings(
"ignore",
message="DataFrameGroupBy.apply operated on the grouping columns.",
)
class AHTrainRegressionTree(AHTrain):
"""
This class is responsible for generating a heuristic by using data collected with AutoHeuristic. It will learn a
regression tree that predicts a score that represents how well a specific choice will perform given an input.
A higher score means a better choice. The heuristic will be generated in a file named <heuristic_name>.py in the
torch/_inductor/autoheuristic/artifacts/ directory.
"""
def __init__(self):
super().__init__()
def main(
self,
log_path,
other_datasets,
nrows,
heuristic_name,
save_dot=False,
ranking=False,
):
"""
Main function that trains a decision tree and generates a heuristic.
"""
(df, choices, cat_feature2cats, dummy_col_2_col_val, metadata) = self.get_df(
log_path, nrows=nrows, apply_filters=True
)
df_train, df_val, df_test, feature_columns = self.custom_train_test_split(df)
datasets = {"train": df_train, "val": df_val, "test": df_test}
self.add_real_datasets(datasets, other_datasets, cat_feature2cats)
# We will do a grid search over these values
# Only trying out max_depths of 5, 6, and 7 because we want to keep the tree and
# generated code small, but smaller than 5 does not perform well enough
max_depths = [5, 6, 7]
min_samples_leafs = [1, 2, 5, 10]
choice_columns = [f"{CHOICE_COL}_{choice}" for choice in choices]
(results_df, best_model, threshold) = self.train_and_evaluate_models(
datasets, feature_columns, choice_columns, max_depths, min_samples_leafs
)
# prints results for all models and datasets
print(results_df.to_string())
# prints results grouped by dataset
for set_name in results_df["dataset"].unique():
dataset_results = results_df[results_df["dataset"] == set_name]
dataset_results = dataset_results.sort_values(by="correct")
print(dataset_results.to_string() + "\n")
feature_names = feature_columns + choice_columns
self.dt_to_python(
best_model,
metadata,
feature_names,
dummy_col_2_col_val,
heuristic_name,
threshold,
)
def get_df(self, log_path, cat_feature2cats=None, nrows=None, apply_filters=False):
"""
Parses the log file and processes the data into a dataframe that can be used for training.
"""
(df, metadata, feature_columns, categorical_features, choices) = self.parse_log(
log_path, nrows
)
def process_data(
df,
feature_columns,
apply_filters,
min_count_measurements=3,
max_relative_std=5,
):
# Calculate statistics for each input and choice combination
def calculate_stats(group):
count = len(group)
mean = group[FEEDBACK_COL].mean()
std = group[FEEDBACK_COL].std()
relative_std = (std / mean) * 100 if mean != 0 else np.inf
median = group[FEEDBACK_COL].median()
return pd.Series(
{
"count": count,
"median_execution_time": median,
"relative_std": relative_std,
}
)
stats = (
df.groupby(feature_columns + [CHOICE_COL])
.apply(calculate_stats)
.reset_index()
)
if apply_filters:
# Remove unstables measurements
valid_stats = stats[
(stats["count"] >= min_count_measurements)
& (stats["relative_std"] <= max_relative_std)
]
# Keep only inputs with at least two valid choices
valid_inputs = valid_stats.groupby(feature_columns).filter(
lambda x: len(x) >= 2
)
else:
valid_inputs = stats
# Compute the winner and ratios for each input
def get_winner_and_speedups(group):
mean_time = group["median_execution_time"].mean()
winner = group.loc[group["median_execution_time"].idxmin(), CHOICE_COL]
min_time = group["median_execution_time"].min()
max_time = group["median_execution_time"].max()
group["winner"] = winner
group["speedup"] = max_time / min_time
group["target"] = mean_time / group["median_execution_time"]
return group[
feature_columns + [CHOICE_COL, "winner", "speedup", "target"]
]
results = (
valid_inputs.groupby(feature_columns)
.apply(get_winner_and_speedups)
.reset_index(drop=True)
)
return results
results = process_data(df, feature_columns, apply_filters)
(results, added_categorical_features) = self.add_new_features(results)
categorical_features += added_categorical_features
categorical_features += [CHOICE_COL]
(
results,
cat_feature2cats,
dummy_col_2_col_val,
) = self.handle_categorical_features(
cat_feature2cats, categorical_features, results
)
return (results, choices, cat_feature2cats, dummy_col_2_col_val, metadata)
def custom_train_test_split(
self, df, test_size=0.2, val_size=0.25, random_state=42
):
"""
Splits the dataframe into train, val, and test sets.
Also adds other datasets, specified by the user, to the train set.
We need to be careful, because we want to make sure that rows with the same input but different choice are
kept in the same set, e.g.
Rows that looks like this
input_1,choice1,...
input_1,choice2,...
should be in the same set.
"""
# We want to make sure that rows with the same input but different choice are kept in the same set
exclude_columns = ["speedup", "winner", "target"]
feature_columns = [
col
for col in df.columns
if col not in exclude_columns and not col.startswith(CHOICE_COL + "_")
]
df["input_id"] = df.groupby(feature_columns).ngroup()
# Get unique input IDs
unique_inputs = df["input_id"].unique()
# Split unique inputs into train+val and test
train_val_inputs, test_inputs = train_test_split(
unique_inputs, test_size=test_size, random_state=random_state
)
# Split train+val inputs into train and val
train_inputs, val_inputs = train_test_split(
train_val_inputs, test_size=val_size, random_state=random_state
)
# Create masks for each set
train_mask = df["input_id"].isin(train_inputs)
val_mask = df["input_id"].isin(val_inputs)
test_mask = df["input_id"].isin(test_inputs)
# Split the dataframe
df_train = df[train_mask]
df_val = df[val_mask]
df_test = df[test_mask]
# Remove the temporary input_id column
df_train = df_train.drop("input_id", axis=1)
df_val = df_val.drop("input_id", axis=1)
df_test = df_test.drop("input_id", axis=1)
return df_train, df_val, df_test, feature_columns
def train_and_evaluate_models(
self,
datasets,
feature_columns,
choice_columns,
max_depths,
min_samples_leafs,
threshold=0.99,
):
"""
Does a grid search over max_depths, min_samples_leafs, and returns the best model.
"""
results = []
df_train = datasets["train"]
df_val = datasets["val"]
best_model = None
best_model_threshold = 0
max_correct_predictions = -1
for max_depth in max_depths:
for min_samples_leaf in min_samples_leafs:
print(
f"Evaluating max_depth={max_depth}, min_samples_leaf={min_samples_leaf}"
)
model = DecisionTreeRegressor(
random_state=42,
max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
)
model.fit(
df_train[feature_columns + choice_columns], df_train["target"]
)
# we first compute a safe threshold: this threshold ensures that on the validation set,
# if the heuristic returns a choice, the choice will be correct, although a high threshold
# can lead to a lot of 'unsure' choices
eval_result = self.evaluate_model(
model, df_val, feature_columns, choice_columns, threshold
)
safe_threshold = eval_result["wrong_max_ratio"]
for dataset_name, dataset in datasets.items():
eval_result = self.evaluate_model(
model, dataset, feature_columns, choice_columns, safe_threshold
)
print(eval_result)
if dataset_name == "val":
eval_correct = eval_result["correct"]
if eval_correct > max_correct_predictions:
best_model = model
best_model_threshold = safe_threshold
max_correct_predictions = eval_correct
results.append(
{
"max_depth": max_depth,
"min_samples_leaf": min_samples_leaf,
"dataset": dataset_name,
"correct": eval_result["correct"],
"wrong": eval_result["wrong"],
"unsure": eval_result["unsure"],
"total": eval_result["total"],
"max_wrong_speedup": eval_result["max_wrong_speedup"],
"gman_wrong_speedup": eval_result["gman_wrong_speedup"],
"threshold": safe_threshold,
}
)
return (pd.DataFrame(results), best_model, best_model_threshold)
def evaluate_model(self, model, df, feature_columns, choice_columns, threshold):
"""
Custom evaluation function that evaluates a learned decision tree.
"""
def predict_winner(group):
predictions = model.predict(group[feature_columns + choice_columns])
# Find the index of the maximum prediction (best choice)
best_choice_index = np.argmax(predictions)
# Get the corresponding choice
predicted_choice = (
group[choice_columns].iloc[best_choice_index].idxmax().split("_")[-1]
)
# Calculate the ratio between the best and second-best prediction
sorted_predictions = np.sort(predictions)[::-1]
top_pred_ratio = (
sorted_predictions[0] / sorted_predictions[1]
if len(sorted_predictions) > 1
else np.inf
)
# If the best choice is not "significantly" better than the second best choice,
# the learned heuristic will return "unsure"
if top_pred_ratio <= threshold:
predicted_winner = "unsure"
else:
predicted_winner = predicted_choice
actual_winner = group["winner"].iloc[0]
is_correct = (
predicted_winner == actual_winner
if predicted_winner != "unsure"
else "unsure"
)
return pd.Series(
{
"predicted_winner": predicted_winner,
"ratio": top_pred_ratio,
"actual_winner": actual_winner,
"is_correct": is_correct,
"speedup": group["speedup"].iloc[
0
], # Speedup is the same for all rows in the group
}
)
results = df.groupby(feature_columns).apply(predict_winner).reset_index()
correct = (results["is_correct"].eq(True)).sum()
unsure = (results["is_correct"] == "unsure").sum()
wrong_results = results[results["is_correct"].eq(False)]
wrong = len(wrong_results)
# Calculate max and geometric mean of speedup for wrong predictions
# Used for debugging purposes
wrong_speedups = wrong_results["speedup"]
max_wrong_speedup = wrong_speedups.max() if not wrong_speedups.empty else np.nan
geo_mean_wrong_speedup = (
gmean(wrong_speedups) if not wrong_speedups.empty else np.nan
)
wrong_max_ratio = wrong_results["ratio"].max()
total = correct + wrong + unsure
return {
"correct": correct,
"wrong": wrong,
"unsure": unsure,
"total": total,
"max_wrong_speedup": max_wrong_speedup,
"gman_wrong_speedup": geo_mean_wrong_speedup,
"wrong_max_ratio": wrong_max_ratio,
}
def dt_to_python(
self,
dt,
metadata,
feature_names,
dummy_col_2_col_val,
heuristic_name,
threshold,
unsafe_leaves=None,
):
tree_ = dt.tree_
feature_name = [
feature_names[i] if i != -1 else "undefined!" for i in tree_.feature
]
lines = []
device_capa = metadata["device_capa"]
device_capa_str = f"({device_capa[0]}, {device_capa[1]})"
opt_name = metadata["name"]
lines.append(
self.codegen_boilerplate(
heuristic_name,
opt_name,
threshold,
metadata["shared_memory"],
device_capa_str,
dt,
)
)
fn_def = f"\n {self.gen_predict_fn_def()}"
lines.append(fn_def)
def dt_to_python(node, depth):
indent = " " * (depth + 1)
if tree_.feature[node] != -2:
name = feature_name[node]
threshold = tree_.threshold[node]
if name in dummy_col_2_col_val:
(orig_name, value) = dummy_col_2_col_val[name]
predicate = f"{indent}if str(context.get_value('{orig_name}')) != '{value}':"
assert (
threshold == 0.5
), f"expected threshold to be 0.5 but is {threshold}"
else:
predicate = (
f"{indent}if context.get_value('{name}') <= {threshold}:"
)
lines.append(predicate)
dt_to_python(tree_.children_left[node], depth + 1)
lines.append(f"{indent}else:")
dt_to_python(tree_.children_right[node], depth + 1)
else:
lines.append(self.handle_leaf(tree_, node, indent, unsafe_leaves))
dt_to_python(0, 1)
self.write_heuristic_to_file(lines, heuristic_name)
def handle_leaf(self, tree_, node, indent, unsafe_leaves):
"""
Generates the code for a leaf node. This is just the value predicted by the regression tree.
"""
value = tree_.value[node][0][0]
return f"{indent}return {str(value)}"
def gen_predict_fn_def(self):
return "def predict(self, context: AHContext) -> float:"
def codegen_boilerplate(
self, heuristic_name, opt_name, threshold, shared_memory, device_capa, classes
):
"""
Generates the boilerplate code for the generated heuristic. This includes things like imports, class definition,
etc.
"""
boiler_plate = f"""# flake8: noqa: B950
# fmt: off
# This file was generated by AutoHeuristic. Do not modify it manually!
# To regenerate this file, take a look at the steps in the README.md file inside torchgen/_autoheuristic/{opt_name}/
from torch._inductor.autoheuristic.autoheuristic_utils import AHContext, AHMetadata, Choice, CHOICE_COL
from torch._inductor.autoheuristic.learnedheuristic_interface import (
LearnedHeuristicRegression,
)
class {heuristic_name}(LearnedHeuristicRegression):
def __init__(self) -> None:
pass
{self.gen_precondition(opt_name, shared_memory, device_capa)}
def get_feedback(self, context: AHContext, choice: Choice) -> float:
context.context_dict[CHOICE_COL] = choice
return self.predict(context)
def get_confidence_threshold(self) -> float:
return {threshold}
def get_name(self) -> str:
return '{opt_name}'"""
return boiler_plate
if __name__ == "__main__":
train = AHTrain()
train.generate_heuristic()
|