1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
import argparse
import warnings
from collections import defaultdict
from contextlib import nullcontext
import torch
from benchmark.utils import (
emit_itt,
get_dataset_with_transformation,
get_model,
get_split_masks,
save_benchmark_data,
test,
write_to_csv,
)
from torch_geometric.io import fs
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import PNAConv
from torch_geometric.profile import (
rename_profile_file,
timeit,
torch_profile,
xpu_profile,
)
supported_sets = {
'ogbn-mag': ['rgat', 'rgcn'],
'ogbn-products': ['edge_cnn', 'gat', 'gcn', 'pna', 'sage'],
'Reddit': ['edge_cnn', 'gat', 'gcn', 'pna', 'sage'],
}
@torch.no_grad()
def full_batch_inference(model, data):
model.eval()
if hasattr(data, 'adj_t'):
edge_index = data.adj_t
else:
edge_index = data.edge_index
return model(data.x, edge_index)
def run(args: argparse.ArgumentParser):
csv_data = defaultdict(list)
if args.write_csv == 'prof' and not args.profile:
warnings.warn("Cannot write profile data to CSV because profiling is "
"disabled")
if args.device == 'xpu':
try:
import intel_extension_for_pytorch as ipex
except ImportError:
raise RuntimeError('XPU device requires IPEX to be installed')
if ((args.device == 'cuda' and not torch.cuda.is_available())
or (args.device == 'xpu' and not torch.xpu.is_available())):
raise RuntimeError(f'{args.device.upper()} is not available')
if args.device == 'cuda' and args.full_batch:
raise RuntimeError('CUDA device is not suitable for full batch mode')
device = torch.device(args.device)
print('BENCHMARK STARTS')
print(f'Running on {args.device.upper()}')
for dataset_name in args.datasets:
assert dataset_name in supported_sets.keys(
), f"Dataset {dataset_name} isn't supported."
print(f'Dataset: {dataset_name}')
load_time = timeit() if args.measure_load_time else nullcontext()
with load_time:
result = get_dataset_with_transformation(dataset_name, args.root,
args.use_sparse_tensor,
args.bf16)
dataset, num_classes, transformation = result
data = dataset.to(device)
hetero = True if dataset_name == 'ogbn-mag' else False
mask = ('paper', None) if dataset_name == 'ogbn-mag' else None
_, _, test_mask = get_split_masks(data, dataset_name)
degree = None
if hetero and args.cached_loader:
args.cached_loader = False
print('Disabling CachedLoader, not supported in Hetero models')
if args.num_layers != [1] and not hetero and args.num_steps != -1:
raise ValueError("Layer-wise inference requires `steps=-1`")
if args.device == 'cuda':
amp = torch.amp.autocast('cuda', enabled=False)
elif args.device == 'xpu':
amp = torch.xpu.amp.autocast(enabled=False)
else:
amp = torch.cpu.amp.autocast(enabled=args.bf16)
if args.device == 'xpu' and args.warmup < 1:
print('XPU device requires warmup - setting warmup=1')
args.warmup = 1
inputs_channels = data[
'paper'].num_features if dataset_name == 'ogbn-mag' \
else dataset.num_features
for model_name in args.models:
if model_name not in supported_sets[dataset_name]:
print(f'Configuration of {dataset_name} + {model_name} '
f'not supported. Skipping.')
continue
with_loader = not args.full_batch or (model_name == 'pna'
and degree is None)
print(f'Evaluation bench for {model_name}:')
for batch_size in args.eval_batch_sizes:
num_nodes = data[
'paper'].num_nodes if hetero else data.num_nodes
sampler = torch.utils.data.RandomSampler(
range(num_nodes), num_samples=args.num_steps * batch_size
) if args.num_steps != -1 and with_loader else None
kwargs = {
'batch_size': batch_size,
'shuffle': False,
'num_workers': args.num_workers,
}
if not hetero:
subgraph_loader = NeighborLoader(
data,
num_neighbors=[-1], # layer-wise inference
input_nodes=mask,
sampler=sampler,
**kwargs,
) if with_loader else None
if args.evaluate and not args.full_batch:
test_loader = NeighborLoader(
data,
num_neighbors=[-1], # layer-wise inference
input_nodes=test_mask,
sampler=None,
**kwargs,
)
for layers in args.num_layers:
num_neighbors = [args.hetero_num_neighbors] * layers
if hetero:
# batch-wise inference
subgraph_loader = NeighborLoader(
data,
num_neighbors=num_neighbors,
input_nodes=mask,
sampler=sampler,
**kwargs,
) if with_loader else None
if args.evaluate and not args.full_batch:
test_loader = NeighborLoader(
data,
num_neighbors=num_neighbors,
input_nodes=test_mask,
sampler=None,
**kwargs,
)
for hidden_channels in args.num_hidden_channels:
print('----------------------------------------------')
print(f'Batch size={batch_size}, '
f'Layers amount={layers}, '
f'Num_neighbors={num_neighbors}, '
f'Hidden features size={hidden_channels}, '
f'Sparse tensor={args.use_sparse_tensor}')
params = {
'inputs_channels': inputs_channels,
'hidden_channels': hidden_channels,
'output_channels': num_classes,
'num_heads': args.num_heads,
'num_layers': layers,
}
if model_name == 'pna':
if degree is None:
degree = PNAConv.get_degree_histogram(
subgraph_loader)
print(f'Calculated degree for {dataset_name}.')
params['degree'] = degree
model = get_model(
model_name, params,
metadata=data.metadata() if hetero else None)
model = model.to(device)
# TODO: Migrate to ModelHubMixin.
if args.ckpt_path:
state_dict = fs.torch_load(args.ckpt_path)
model.load_state_dict(state_dict)
model.eval()
if args.device == 'xpu':
model = ipex.optimize(model)
# Define context manager parameters:
if args.cpu_affinity and with_loader:
cpu_affinity = subgraph_loader.enable_cpu_affinity(
args.loader_cores)
else:
cpu_affinity = nullcontext()
if args.profile and args.device == 'xpu':
profile = xpu_profile(args.export_chrome_trace)
elif args.profile:
profile = torch_profile(args.export_chrome_trace,
csv_data, args.write_csv)
else:
profile = nullcontext()
itt = emit_itt(
) if args.vtune_profile else nullcontext()
if args.full_batch and args.use_sparse_tensor:
data = transformation(data)
with cpu_affinity, amp, timeit() as time:
inference_kwargs = dict(cache=args.cached_loader)
if args.reuse_device_for_embeddings and not hetero:
inference_kwargs['embedding_device'] = device
for _ in range(args.warmup):
if args.full_batch:
full_batch_inference(model, data)
else:
model.inference(
subgraph_loader,
device,
progress_bar=True,
**inference_kwargs,
)
if args.warmup > 0:
time.reset()
with itt, profile:
if args.full_batch:
y = full_batch_inference(model, data)
if args.evaluate:
mask = data.test_mask
pred = y[mask].argmax(1)
test_acc = pred.eq(data.y[mask]).sum(
).item() / mask.sum().item()
print(f'Full Batch Test Accuracy: \
{test_acc:.4f}')
else:
y = model.inference(
subgraph_loader,
device,
progress_bar=True,
**inference_kwargs,
)
if args.evaluate:
test_acc = test(
model,
test_loader,
device,
hetero,
progress_bar=True,
)
print(f'Mini Batch Test Accuracy: \
{test_acc:.4f}')
if args.profile and args.export_chrome_trace:
rename_profile_file(model_name, dataset_name,
str(batch_size), str(layers),
str(hidden_channels),
str(num_neighbors))
total_time = time.duration
if args.num_steps != -1:
total_num_samples = args.num_steps * batch_size
else:
total_num_samples = num_nodes
throughput = total_num_samples / total_time
latency = total_time / total_num_samples * 1000
print(f'Throughput: {throughput:.3f} samples/s')
print(f'Latency: {latency:.3f} ms')
num_records = 1
if args.write_csv == 'prof':
# For profiling with PyTorch, we save the top-5
# most time consuming operations. Therefore, the
# same data should be entered for each of them.
num_records = 5
for _ in range(num_records):
save_benchmark_data(
csv_data,
batch_size,
layers,
num_neighbors,
hidden_channels,
total_time,
model_name,
dataset_name,
args.use_sparse_tensor,
)
if args.write_csv:
write_to_csv(csv_data, args.write_csv)
if __name__ == '__main__':
argparser = argparse.ArgumentParser('GNN inference benchmark')
add = argparser.add_argument
add('--device', choices=['cpu', 'cuda', 'xpu'], default='cpu',
help='Device to run benchmark on')
add('--reuse-device-for-embeddings', action='store_true',
help='Use the same device for embeddings as specified in "--device"')
add('--datasets', nargs='+',
default=['ogbn-mag', 'ogbn-products', 'Reddit'], type=str)
add('--use-sparse-tensor', action='store_true',
help='use torch_sparse.SparseTensor as graph storage format')
add('--models', nargs='+',
default=['edge_cnn', 'gat', 'gcn', 'pna', 'rgat', 'rgcn'], type=str)
add('--root', default='../../data', type=str,
help='relative path to look for the datasets')
add('--eval-batch-sizes', nargs='+', default=[512, 1024, 2048, 4096, 8192],
type=int)
add('--num-layers', nargs='+', default=[2, 3], type=int)
add('--num-hidden-channels', nargs='+', default=[64, 128, 256], type=int)
add('--num-heads', default=2, type=int,
help='number of hidden attention heads, applies only for gat and rgat')
add('--hetero-num-neighbors', default=10, type=int,
help='number of neighbors to sample per layer for hetero workloads')
add('--num-workers', default=0, type=int)
add('--num-steps', default=-1, type=int,
help='number of steps, -1 means iterating through all the data')
add('--warmup', default=1, type=int)
add('--profile', action='store_true')
add('--vtune-profile', action='store_true')
add('--bf16', action='store_true')
add('--cpu-affinity', action='store_true',
help='Use DataLoader affinitzation.')
add('--loader-cores', nargs='+', default=[], type=int,
help="List of CPU core IDs to use for DataLoader workers")
add('--measure-load-time', action='store_true')
add('--full-batch', action='store_true', help='Use full batch mode')
add('--evaluate', action='store_true')
add('--ckpt_path', type=str, help='Checkpoint path for loading a model')
add('--write-csv', choices=[None, 'bench', 'prof'], default=None,
help='Write benchmark or PyTorch profile data to CSV')
add('--export-chrome-trace', default=True, type=bool,
help='Export chrome trace file. Works only with PyTorch profiler')
add('--cached-loader', action='store_true', help='Use CachedLoader')
run(argparser.parse_args())
|