File: gcn.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (77 lines) | stat: -rw-r--r-- 2,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn.functional as F
from torch.nn import Linear

from torch_geometric.nn import GCNConv, JumpingKnowledge, global_mean_pool


class GCN(torch.nn.Module):
    def __init__(self, dataset, num_layers, hidden):
        super().__init__()
        self.conv1 = GCNConv(dataset.num_features, hidden)
        self.convs = torch.nn.ModuleList()
        for i in range(num_layers - 1):
            self.convs.append(GCNConv(hidden, hidden))
        self.lin1 = Linear(hidden, hidden)
        self.lin2 = Linear(hidden, dataset.num_classes)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        self.lin1.reset_parameters()
        self.lin2.reset_parameters()

    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch
        x = F.relu(self.conv1(x, edge_index))
        for conv in self.convs:
            x = F.relu(conv(x, edge_index))
        x = global_mean_pool(x, batch)
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return F.log_softmax(x, dim=-1)

    def __repr__(self):
        return self.__class__.__name__


class GCNWithJK(torch.nn.Module):
    def __init__(self, dataset, num_layers, hidden, mode='cat'):
        super().__init__()
        self.conv1 = GCNConv(dataset.num_features, hidden)
        self.convs = torch.nn.ModuleList()
        for i in range(num_layers - 1):
            self.convs.append(GCNConv(hidden, hidden))
        self.jump = JumpingKnowledge(mode)
        if mode == 'cat':
            self.lin1 = Linear(num_layers * hidden, hidden)
        else:
            self.lin1 = Linear(hidden, hidden)
        self.lin2 = Linear(hidden, dataset.num_classes)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        self.jump.reset_parameters()
        self.lin1.reset_parameters()
        self.lin2.reset_parameters()

    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch
        x = F.relu(self.conv1(x, edge_index))
        xs = [x]
        for conv in self.convs:
            x = F.relu(conv(x, edge_index))
            xs += [x]
        x = self.jump(xs)
        x = global_mean_pool(x, batch)
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return F.log_softmax(x, dim=-1)

    def __repr__(self):
        return self.__class__.__name__