1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import argparse
from itertools import product
import torch
from datasets import get_dataset
from gcn import GCN
from gin import GIN
from graph_sage import GraphSAGE
from train_eval import eval_acc, inference_run, train
from torch_geometric import seed_everything
from torch_geometric.loader import DataLoader
from torch_geometric.profile import rename_profile_file, timeit, torch_profile
seed_everything(0)
parser = argparse.ArgumentParser()
parser.add_argument(
'--datasets', type=str, nargs='+',
default=['MUTAG', 'PROTEINS', 'IMDB-BINARY', 'REDDIT-BINARY'])
parser.add_argument('--models', type=str, nargs='+',
default=['GCN', 'GraphSAGE', 'GIN'])
parser.add_argument('--layers', type=int, nargs='+', default=[1, 2, 3])
parser.add_argument('--hiddens', type=int, nargs='+', default=[16, 32])
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--warmup_profile', type=int, default=1,
help='Skip the first few runs')
parser.add_argument('--goal_accuracy', type=int, default=1,
help='The goal test accuracy')
parser.add_argument('--inference', action='store_true')
parser.add_argument('--profile', action='store_true')
parser.add_argument('--bf16', action='store_true')
parser.add_argument('--compile', action='store_true')
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
if torch.cuda.is_available():
amp = torch.amp.autocast('cuda', enabled=False)
else:
amp = torch.cpu.amp.autocast(enabled=args.bf16)
MODELS = {
'GCN': GCN,
'GraphSAGE': GraphSAGE,
'GIN': GIN,
}
def prepare_dataloader(dataset_name):
dataset = get_dataset(dataset_name, sparse=True)
num_train = int(len(dataset) * 0.8)
num_val = int(len(dataset) * 0.1)
train_dataset = dataset[:num_train]
val_dataset = dataset[num_train:num_train + num_val]
test_dataset = dataset[num_train + num_val:]
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size,
shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False)
return dataset, train_loader, val_loader, test_loader
def run_train():
for dataset_name, model_name in product(args.datasets, args.models):
dataset, train_loader, val_loader, test_loader = prepare_dataloader(
dataset_name)
Model = MODELS[model_name]
for num_layers, hidden in product(args.layers, args.hiddens):
print('--')
print(f'{dataset_name} - {model_name}- {num_layers} - {hidden}')
model = Model(dataset, num_layers, hidden).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.compile:
model = torch.compile(model)
loss_list = []
acc_list = []
for epoch in range(1, args.epochs + 1):
if epoch == args.epochs:
with timeit():
loss = train(model, optimizer, train_loader)
else:
loss = train(model, optimizer, train_loader)
with timeit(log=False) as t:
val_acc = eval_acc(model, val_loader)
val_time = t.duration
with timeit(log=False) as t:
test_acc = eval_acc(model, test_loader)
test_time = t.duration
if epoch >= args.warmup_profile:
loss_list.append(loss)
acc_list.append([val_acc, val_time, test_acc, test_time])
if args.profile:
with torch_profile():
train(model, optimizer, train_loader)
rename_profile_file(model_name, dataset_name, str(num_layers),
str(hidden), 'train')
@torch.no_grad()
def run_inference():
for dataset_name, model_name in product(args.datasets, args.models):
dataset, _, _, test_loader = prepare_dataloader(dataset_name)
Model = MODELS[model_name]
for num_layers, hidden in product(args.layers, args.hiddens):
print('--')
print(f'{dataset_name} - {model_name}- {num_layers} - {hidden}')
model = Model(dataset, num_layers, hidden).to(device)
if args.compile:
model = torch.compile(model)
with amp:
for epoch in range(1, args.epochs + 1):
if epoch == args.epochs:
with timeit():
inference_run(model, test_loader, args.bf16)
else:
inference_run(model, test_loader, args.bf16)
if args.profile:
with torch_profile():
inference_run(model, test_loader, args.bf16)
rename_profile_file(model_name, dataset_name,
str(num_layers), str(hidden),
'inference')
if not args.inference:
run_train()
else:
run_inference()
|