1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
import argparse
import ast
from time import perf_counter
from typing import Any, Callable, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from benchmark.utils import get_model, get_split_masks, test
from torch_geometric.data import Data, HeteroData
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import PNAConv
supported_sets = {
'ogbn-mag': ['rgat', 'rgcn'],
'ogbn-products': ['edge_cnn', 'gat', 'gcn', 'pna', 'sage'],
'Reddit': ['edge_cnn', 'gat', 'gcn', 'pna', 'sage'],
}
device_conditions = {
'xpu': (lambda: torch.xpu.is_available()),
'cuda': (lambda: torch.cuda.is_available()),
}
def train_homo(model: Any, loader: NeighborLoader, optimizer: torch.optim.Adam,
device: torch.device) -> torch.Tensor:
for batch in loader:
optimizer.zero_grad()
batch = batch.to(device)
out = model(batch.x, batch.edge_index)
batch_size = batch.batch_size
out = out[:batch_size]
target = batch.y[:batch_size]
loss = F.cross_entropy(out, target)
loss.backward()
optimizer.step()
return loss
def train_hetero(model: Any, loader: NeighborLoader,
optimizer: torch.optim.Adam,
device: torch.device) -> torch.Tensor:
for batch in loader:
optimizer.zero_grad()
batch = batch.to(device)
out = model(batch.x_dict, batch.edge_index_dict)
batch_size = batch['paper'].batch_size
out = out['paper'][:batch_size]
target = batch['paper'].y[:batch_size]
loss = F.cross_entropy(out, target)
loss.backward()
optimizer.step()
return loss
def maybe_synchronize(device: str):
if device == 'xpu' and torch.xpu.is_available():
torch.xpu.synchronize()
if device == 'cuda' and torch.cuda.is_available():
torch.cuda.synchronize()
def create_mask_per_rank(
global_mask: Union[torch.Tensor,
Tuple[str,
torch.Tensor]], rank: int, world_size: int,
hetero: bool = False) -> Union[torch.Tensor, Tuple[str, torch.Tensor]]:
mask = global_mask[-1] if hetero else global_mask
nonzero = mask.nonzero().reshape(-1)
rank_indices = nonzero.split(nonzero.size(0) // world_size,
dim=0)[rank].clone()
mask_per_rank = torch.full_like(mask, False)
mask_per_rank[rank_indices] = True
if hetero:
return tuple((global_mask[0], mask_per_rank))
else:
return mask_per_rank
def run(rank: int, world_size: int, args: argparse.ArgumentParser,
num_classes: int, data: Union[Data, HeteroData],
custom_optimizer: Callable[[Any, Any], Tuple[Any, Any]] = None):
if not device_conditions[args.device]():
raise RuntimeError(f'{args.device.upper()} is not available')
device = torch.device(f'{args.device}:{rank}')
if rank == 0:
print('BENCHMARK STARTS')
print(f'Running on {args.device.upper()}')
print(f'Dataset: {args.dataset}')
hetero = True if args.dataset == 'ogbn-mag' else False
mask, val_mask, test_mask = get_split_masks(data, args.dataset)
mask = create_mask_per_rank(mask, rank, world_size, hetero)
degree = None
inputs_channels = data[
'paper'].num_features if args.dataset == 'ogbn-mag' \
else data.num_features
if args.model not in supported_sets[args.dataset]:
err_msg = (f'Configuration of {args.dataset} + {args.model}'
'not supported')
raise RuntimeError(err_msg)
if rank == 0:
print(f'Training bench for {args.model}:')
num_nodes = int(mask[-1].sum()) if hetero else int(mask.sum())
num_neighbors = args.num_neighbors
if type(num_neighbors) is list:
if len(num_neighbors) == 1:
num_neighbors = num_neighbors * args.num_layers
elif type(num_neighbors) is int:
num_neighbors = [num_neighbors] * args.num_layers
if len(num_neighbors) != args.num_layers:
err_msg = (f'num_neighbors={num_neighbors} lenght != num of'
'layers={args.num_layers}')
kwargs = {
'num_neighbors': num_neighbors,
'batch_size': args.batch_size,
'num_workers': args.num_workers,
}
subgraph_loader = NeighborLoader(
data,
input_nodes=mask,
sampler=None,
**kwargs,
)
if rank == 0 and args.evaluate:
val_loader = NeighborLoader(
data,
input_nodes=val_mask,
sampler=None,
**kwargs,
)
test_loader = NeighborLoader(
data,
input_nodes=test_mask,
sampler=None,
**kwargs,
)
if rank == 0:
print('----------------------------------------------')
print(
f'Batch size={args.batch_size}, '
f'Layers amount={args.num_layers}, '
f'Num_neighbors={num_neighbors}, '
f'Hidden features size={args.num_hidden_channels}', flush=True)
params = {
'inputs_channels': inputs_channels,
'hidden_channels': args.num_hidden_channels,
'output_channels': num_classes,
'num_heads': args.num_heads,
'num_layers': args.num_layers,
}
if args.model == 'pna' and degree is None:
degree = PNAConv.get_degree_histogram(subgraph_loader)
print(f'Rank: {rank}, calculated degree for {args.dataset}.',
flush=True)
params['degree'] = degree
dist.barrier()
torch.manual_seed(12345)
model = get_model(args.model, params,
metadata=data.metadata() if hetero else None)
model = model.to(device)
if hetero:
model.eval()
x_keys = data.metadata()[0]
edge_index_keys = data.metadata()[1]
fake_x_dict = {
k: torch.rand((32, inputs_channels), device=device)
for k in x_keys
}
fake_edge_index_dict = {
k: torch.randint(0, 32, (2, 8), device=device)
for k in edge_index_keys
}
model.forward(fake_x_dict, fake_edge_index_dict)
model = DDP(model, device_ids=[device], find_unused_parameters=hetero)
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
if custom_optimizer:
model, optimizer = custom_optimizer(model, optimizer)
train = train_hetero if hetero else train_homo
maybe_synchronize(args.device)
dist.barrier()
if rank == 0:
beg = perf_counter()
for epoch in range(args.num_epochs):
loss = train(
model,
subgraph_loader,
optimizer,
device,
)
dist.barrier()
if rank == 0:
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}', flush=True)
if rank == 0 and args.evaluate:
# In evaluate, throughput and
# latency are not accurate.
val_acc = test(model, val_loader, device, hetero,
progress_bar=False)
print(f'Val Accuracy: {val_acc:.4f}')
dist.barrier()
maybe_synchronize(args.device)
dist.barrier()
if rank == 0:
end = perf_counter()
duration = end - beg
if rank == 0 and args.evaluate:
test_acc = test(model, test_loader, device, hetero, progress_bar=False)
print(f'Test Accuracy: {test_acc:.4f}')
dist.barrier()
if rank == 0:
num_nodes_total = num_nodes * world_size
duration_per_epoch = duration / args.num_epochs
throughput = num_nodes_total / duration_per_epoch
latency = duration_per_epoch / num_nodes_total * 1000
print(f'Time: {duration_per_epoch:.4f}s')
print(f'Throughput: {throughput:.3f} samples/s')
print(f'Latency: {latency:.3f} ms', flush=True)
dist.destroy_process_group()
def get_predefined_args() -> argparse.ArgumentParser:
argparser = argparse.ArgumentParser(
'GNN distributed (DDP) training benchmark')
add = argparser.add_argument
add('--dataset', choices=['ogbn-mag', 'ogbn-products', 'Reddit'],
default='Reddit', type=str)
add('--model',
choices=['edge_cnn', 'gat', 'gcn', 'pna', 'rgat', 'rgcn',
'sage'], default='sage', type=str)
add('--root', default='../../data', type=str,
help='relative path to look for the datasets')
add('--batch-size', default=4096, type=int)
add('--num-layers', default=3, type=int)
add('--num-hidden-channels', default=128, type=int)
add('--num-heads', default=2, type=int,
help='number of hidden attention heads, applies only for gat and rgat')
add('--num-neighbors', default=[10], type=ast.literal_eval,
help='number of neighbors to sample per layer')
add('--num-workers', default=0, type=int)
add('--num-epochs', default=1, type=int)
add('--evaluate', action='store_true')
return argparser
|