1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
import argparse
import torch
import torch.nn.functional as F
from points.datasets import get_dataset
from points.train_eval import run
from torch.nn import Linear as Lin
from torch.nn import ReLU
from torch.nn import Sequential as Seq
from torch_geometric.nn import DynamicEdgeConv, global_max_pool
from torch_geometric.profile import rename_profile_file
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay_factor', type=float, default=0.5)
parser.add_argument('--lr_decay_step_size', type=int, default=50)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--inference', action='store_true')
parser.add_argument('--profile', action='store_true')
parser.add_argument('--bf16', action='store_true')
parser.add_argument('--compile', action='store_true')
args = parser.parse_args()
class Net(torch.nn.Module):
def __init__(self, num_classes):
super().__init__()
nn = Seq(Lin(6, 64), ReLU(), Lin(64, 64), ReLU(), Lin(64, 64), ReLU())
self.conv1 = DynamicEdgeConv(nn, k=20, aggr='max')
nn = Seq(Lin(128, 128), ReLU(), Lin(128, 128), ReLU(), Lin(128, 256),
ReLU())
self.conv2 = DynamicEdgeConv(nn, k=20, aggr='max')
self.lin0 = Lin(256, 512)
self.lin1 = Lin(512, 256)
self.lin2 = Lin(256, 256)
self.lin3 = Lin(256, num_classes)
def forward(self, pos, batch):
x = self.conv1(pos, batch)
x = self.conv2(x, batch)
x = F.relu(self.lin0(x))
x = global_max_pool(x, batch)
x = F.relu(self.lin1(x))
x = F.relu(self.lin2(x))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin3(x)
return F.log_softmax(x, dim=-1)
train_dataset, test_dataset = get_dataset(num_points=1024)
model = Net(train_dataset.num_classes)
run(train_dataset, test_dataset, model, args.epochs, args.batch_size, args.lr,
args.lr_decay_factor, args.lr_decay_step_size, args.weight_decay,
args.inference, args.profile, args.bf16, args.compile)
if args.profile:
rename_profile_file('points', DynamicEdgeConv.__name__)
|