File: rgcn.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (149 lines) | stat: -rw-r--r-- 4,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import dgl.function as fn
import torch
import torch.nn.functional as F
from torch.nn import Parameter as Param

from torch_geometric.nn.inits import uniform


class RGCNConv(torch.nn.Module):
    def __init__(self, g, in_channels, out_channels, num_relations, num_bases):
        super().__init__()

        self.g = g
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_relations = num_relations
        self.num_bases = num_bases

        self.basis = Param(torch.empty(num_bases, in_channels, out_channels))
        self.att = Param(torch.empty(num_relations, num_bases))
        self.root = Param(torch.empty(in_channels, out_channels))
        self.bias = Param(torch.empty(out_channels))

        self.reset_parameters()

    def reset_parameters(self):
        size = self.num_bases * self.in_channels
        uniform(size, self.basis)
        uniform(size, self.att)
        uniform(size, self.root)
        uniform(size, self.bias)

    def rgcn_reduce(self, node):
        return {'x': node.mailbox['m'].sum(dim=1)}

    def forward(self, x):
        self.w = torch.matmul(self.att, self.basis.view(self.num_bases, -1))
        self.w = self.w.view(self.num_relations, self.in_channels,
                             self.out_channels)

        if x is None:

            def msg_func(edge):
                w = self.w.view(-1, self.out_channels)
                index = edge.data['type'] * self.in_channels + edge.src['id']
                m = w.index_select(0, index) * edge.data['norm'].unsqueeze(1)
                return {'m': m}
        else:
            self.g.ndata['x'] = x

            def msg_func(edge):
                w = self.w.index_select(0, edge.data['type'])
                m = torch.bmm(edge.src['x'].unsqueeze(1), w).squeeze()
                m = m * edge.data['norm'].unsqueeze(1)
                return {'m': m}

        self.g.update_all(msg_func, self.rgcn_reduce)
        out = self.g.ndata.pop('x')

        if x is None:
            out = out + self.root
        else:
            out = out + torch.matmul(x, self.root)

        out = out + self.bias
        return out


class RGCN(torch.nn.Module):
    def __init__(self, g, in_channels, out_channels, num_relations):
        super().__init__()
        self.conv1 = RGCNConv(g, in_channels, 16, num_relations, num_bases=30)
        self.conv2 = RGCNConv(g, 16, out_channels, num_relations, num_bases=30)

    def forward(self, x):
        x = F.relu(self.conv1(None))
        x = self.conv2(x)
        return F.log_softmax(x, dim=1)


class RGCNSPMVConv(torch.nn.Module):
    def __init__(self, g, in_channels, out_channels, num_relations, num_bases):
        super().__init__()

        self.g = g
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_relations = num_relations
        self.num_bases = num_bases

        self.basis = Param(torch.empty(num_bases, in_channels, out_channels))
        self.att = Param(torch.empty(num_relations, num_bases))
        self.root = Param(torch.empty(in_channels, out_channels))
        self.bias = Param(torch.empty(out_channels))

        self.reset_parameters()

    def reset_parameters(self):
        size = self.num_bases * self.in_channels
        uniform(size, self.basis)
        uniform(size, self.att)
        uniform(size, self.root)
        uniform(size, self.bias)

    def forward(self, x):
        self.w = torch.matmul(self.att, self.basis.view(self.num_bases, -1))
        self.w = self.w.view(self.num_relations, self.in_channels,
                             self.out_channels)

        if x is None:

            def msg_func(edge):
                w = self.w.view(-1, self.out_channels)
                index = edge.data['type'] * self.in_channels + edge.src['id']
                m = w.index_select(0, index) * edge.data['norm'].unsqueeze(1)
                return {'m': m}
        else:
            self.g.ndata['x'] = x

            def msg_func(edge):
                w = self.w.index_select(0, edge.data['type'])
                m = torch.bmm(edge.src['x'].unsqueeze(1), w).squeeze()
                m = m * edge.data['norm'].unsqueeze(1)
                return {'m': m}

        self.g.update_all(msg_func, fn.sum(msg='m', out='x'))
        out = self.g.ndata.pop('x')

        if x is None:
            out = out + self.root
        else:
            out = out + torch.matmul(x, self.root)

        out = out + self.bias
        return out


class RGCNSPMV(torch.nn.Module):
    def __init__(self, g, in_channels, out_channels, num_relations):
        super().__init__()
        self.conv1 = RGCNSPMVConv(g, in_channels, 16, num_relations,
                                  num_bases=30)
        self.conv2 = RGCNSPMVConv(g, 16, out_channels, num_relations,
                                  num_bases=30)

    def forward(self, x):
        x = F.relu(self.conv1(None))
        x = self.conv2(x)
        return F.log_softmax(x, dim=1)