1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
TorchScript Support
===================
TorchScript is a way to create serializable and optimizable models from :pytorch:`PyTorch` code.
Any TorchScript program can be saved from a :python:`Python` process and loaded in a process where there is no :python:`Python` dependency.
If you are unfamilar with TorchScript, we recommend to read the official "`Introduction to TorchScript <https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html>`_" tutorial first.
Converting GNN Models
---------------------
.. note::
From :pyg:`PyG` 2.5 (and onwards), GNN layers are now fully compatible with :meth:`torch.jit.script` without any modification needed.
If you are on an earlier version of :pyg:`PyG`, consider to convert your GNN layers into "jittable" instances first by calling :meth:`~torch_geometric.nn.conv.MessagePassing.jittable`.
Converting your :pyg:`PyG` model to a TorchScript program is straightforward and requires only a few code changes.
Let's consider the following model:
.. code-block:: python
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GNN(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = GCNConv(in_channels, 64)
self.conv2 = GCNConv(64, out_channels)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
model = GNN(dataset.num_features, dataset.num_classes)
The instantiated model can now be directly passed into :meth:`torch.jit.script`:
.. code-block:: python
model = torch.jit.script(model)
That is all you need to know on how to convert your :pyg:`PyG` models to TorchScript programs.
You can have a further look at our JIT examples that show-case how to obtain TorchScript programs for `node <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/jit/gat.py>`_ and `graph classification <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/jit/gin.py>`_ models.
Creating Jittable GNN Operators
--------------------------------
All :pyg:`PyG` :class:`~torch_geometric.nn.conv.MessagePassing` operators are tested to be convertible to a TorchScript program.
However, if you want your own GNN module to be compatible with :meth:`torch.jit.script`, you need to account for the following two things:
1. As one would expect, your :meth:`forward` code may need to be adjusted so that it passes the TorchScript compiler requirements, *e.g.*, by adding type notations.
2. You need to tell the :class:`~torch_geometric.nn.conv.MessagePassing` module the types that you pass to its :meth:`~torch_geometric.nn.conv.MessagePassing.propagate` function.
This can be achieved in two different ways:
1. Declaring the type of propagation arguments in a dictionary called :obj:`propagate_type`:
.. code-block:: python
from typing import Optional
from torch import Tensor
from torch_geometric.nn import MessagePassing
class MyConv(MessagePassing):
propagate_type = {'x': Tensor, 'edge_weight': Optional[Tensor] }
def forward(
self,
x: Tensor,
edge_index: Tensor,
edge_weight: Optional[Tensor] = None,
) -> Tensor:
return self.propagate(edge_index, x=x, edge_weight=edge_weight)
2. Declaring the type of propagation arguments as a comment inside your module:
.. code-block:: python
from typing import Optional
from torch import Tensor
from torch_geometric.nn import MessagePassing
class MyConv(MessagePassing):
def forward(
self,
x: Tensor,
edge_index: Tensor,
edge_weight: Optional[Tensor] = None,
) -> Tensor:
# propagate_type: (x: Tensor, edge_weight: Optional[Tensor])
return self.propagate(edge_index, x=x, edge_weight=edge_weight)
If none of these options are given, the :class:`~torch_geometric.nn.conv.MessagePassing` module will infer the arguments of :meth:`~torch_geometric.nn.conv.MessagePassing.propagate` to be of type :class:`torch.Tensor` (mimicing the default type that TorchScript is inferring for non-annotated arguments).
|