File: nn.rst

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (301 lines) | stat: -rw-r--r-- 10,725 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
torch_geometric.nn
==================

.. contents:: Contents
    :local:

.. autoclass:: torch_geometric.nn.sequential.Sequential

.. currentmodule:: torch_geometric.nn.dense

   {% for name in torch_geometric.nn.dense.lin_classes %}
.. autoclass:: {{ name }}
   :members:
   {% endfor %}

Convolutional Layers
--------------------

.. currentmodule:: torch_geometric.nn.conv

.. autosummary::
   :nosignatures:
   :toctree: ../generated
   :template: autosummary/nn.rst

   {% for name in torch_geometric.nn.conv.classes %}
     {{ name }}
   {% endfor %}

Aggregation Operators
---------------------

.. currentmodule:: torch_geometric.nn.aggr

Aggregation functions play an important role in the message passing framework and the readout functions of Graph Neural Networks.
Specifically, many works in the literature (`Hamilton et al. (2017) <https://arxiv.org/abs/1706.02216>`__, `Xu et al. (2018) <https://arxiv.org/abs/1810.00826>`__, `Corso et al. (2020) <https://arxiv.org/abs/2004.05718>`__, `Li et al. (2020) <https://arxiv.org/abs/2006.07739>`__, `Tailor et al. (2021) <https://arxiv.org/abs/2104.01481>`__) demonstrate that the choice of aggregation functions contributes significantly to the representational power and performance of the model.
For example, **mean aggregation** captures the distribution (or proportions) of elements, **max aggregation** proves to be advantageous to identify representative elements, and **sum aggregation** enables the learning of structural graph properties (`Xu et al. (2018) <https://arxiv.org/abs/1810.00826>`__).
Recent works also show that using **multiple aggregations** (`Corso et al. (2020) <https://arxiv.org/abs/2004.05718>`__, `Tailor et al. (2021) <https://arxiv.org/abs/2104.01481>`__) and **learnable aggregations** (`Li et al. (2020) <https://arxiv.org/abs/2006.07739>`__) can potentially provide substantial improvements.
Another line of research studies optimization-based and implicitly-defined aggregations (`Bartunov et al. (2022) <https://arxiv.org/abs/2202.12795>`__).
Furthermore, an interesting discussion concerns the trade-off between representational power (usually gained through learnable functions implemented as neural networks) and the formal property of permutation invariance (`Buterez et al. (2022) <https://arxiv.org/abs/2211.04952>`__).

To facilitate further experimentation and unify the concepts of aggregation within GNNs across both :class:`~torch_geometric.nn.conv.MessagePassing` and global readouts, we have made the concept of :class:`~torch_geometric.nn.aggr.Aggregation` a first-class principle in :pyg:`PyG`.
As of now, :pyg:`PyG` provides support for various aggregations --- from rather simple ones (*e.g.*, :obj:`mean`, :obj:`max`, :obj:`sum`), to advanced ones (*e.g.*, :obj:`median`, :obj:`var`, :obj:`std`), learnable ones (*e.g.*, :class:`~torch_geometric.nn.aggr.SoftmaxAggregation`, :class:`~torch_geometric.nn.aggr.PowerMeanAggregation`, :class:`~torch_geometric.nn.aggr.SetTransformerAggregation`), and exotic ones (*e.g.*, :class:`~torch_geometric.nn.aggr.MLPAggregation`, :class:`~torch_geometric.nn.aggr.LSTMAggregation`, :class:`~torch_geometric.nn.aggr.SortAggregation`, :class:`~torch_geometric.nn.aggr.EquilibriumAggregation`):

.. code-block:: python

   from torch_geometric.nn import aggr

   # Simple aggregations:
   mean_aggr = aggr.MeanAggregation()
   max_aggr = aggr.MaxAggregation()

   # Advanced aggregations:
   median_aggr = aggr.MedianAggregation()

   # Learnable aggregations:
   softmax_aggr = aggr.SoftmaxAggregation(learn=True)
   powermean_aggr = aggr.PowerMeanAggregation(learn=True)

   # Exotic aggregations:
   lstm_aggr = aggr.LSTMAggregation(in_channels=..., out_channels=...)
   sort_aggr = aggr.SortAggregation(k=4)

We can then easily apply these aggregations over a batch of sets of potentially varying size.
For this, an :obj:`index` vector defines the mapping from input elements to their location in the output:

.. code-block:: python

   # Feature matrix holding 1000 elements with 64 features each:
   x = torch.randn(1000, 64)

   # Randomly assign elements to 100 sets:
   index = torch.randint(0, 100, (1000, ))

   output = mean_aggr(x, index)  #  Output shape: [100, 64]

Notably, all aggregations share the same set of forward arguments, as described in detail in the :class:`torch_geometric.nn.aggr.Aggregation` base class.

Each of the provided aggregations can be used within :class:`~torch_geometric.nn.conv.MessagePassing` as well as for hierachical/global pooling to obtain graph-level representations:

.. code-block:: python

   import torch
   from torch_geometric.nn import MessagePassing

   class MyConv(MessagePassing):
       def __init__(self, ...):
           # Use a learnable softmax neighborhood aggregation:
           super().__init__(aggr=aggr.SoftmaxAggregation(learn=True))

      def forward(self, x, edge_index):
          ....


   class MyGNN(torch.nn.Module)
       def __init__(self, ...):
           super().__init__()

           self.conv = MyConv(...)
           # Use a global sort aggregation:
           self.global_pool = aggr.SortAggregation(k=4)
           self.classifier = torch.nn.Linear(...)

        def foward(self, x, edge_index, batch):
            x = self.conv(x, edge_index).relu()
            x = self.global_pool(x, batch)
            x = self.classifier(x)
            return x

In addition, the aggregation package of :pyg:`PyG` introduces two new concepts:
First, aggregations can be **resolved from pure strings** via a lookup table, following the design principles of the `class-resolver <https://github.com/cthoyt/class-resolver>`__ library, *e.g.*, by simply passing in :obj:`"median"` to the :class:`~torch_geometric.nn.conv.MessagePassing` module.
This will automatically resolve to the :obj:`~torch_geometric.nn.aggr.MedianAggregation` class:

.. code-block:: python

   class MyConv(MessagePassing):
       def __init__(self, ...):
           super().__init__(aggr="median")

Secondly, **multiple aggregations** can be combined and stacked via the :class:`~torch_geometric.nn.aggr.MultiAggregation` module in order to enhance the representational power of GNNs (`Corso et al. (2020) <https://arxiv.org/abs/2004.05718>`__, `Tailor et al. (2021) <https://arxiv.org/abs/2104.01481>`__):

.. code-block:: python

   class MyConv(MessagePassing):
       def __init__(self, ...):
           # Combines a set of aggregations and concatenates their results,
           # i.e. its output will be `[num_nodes, 3 * out_channels]` here.
           # Note that the interface also supports automatic resolution.
           super().__init__(aggr=aggr.MultiAggregation(
               ['mean', 'std', aggr.SoftmaxAggregation(learn=True)]))

Importantly, :class:`~torch_geometric.nn.aggr.MultiAggregation` provides various options to combine the outputs of its underlying aggegations (*e.g.*, using concatenation, summation, attention, ...) via its :obj:`mode` argument.
The default :obj:`mode` performs concatenation (:obj:`"cat"`).
For combining via attention, we need to additionally specify the :obj:`in_channels` :obj:`out_channels`, and :obj:`num_heads`:

.. code-block:: python

   multi_aggr = aggr.MultiAggregation(
       aggrs=['mean', 'std'],
       mode='attn',
       mode_kwargs=dict(in_channels=64, out_channels=64, num_heads=4),
   )

If aggregations are given as a list, they will be automatically resolved to a :class:`~torch_geometric.nn.aggr.MultiAggregation`, *e.g.*, :obj:`aggr=['mean', 'std', 'median']`.

Finally, we added full support for customization of aggregations into the :class:`~torch_geometric.nn.conv.SAGEConv` layer --- simply override its :obj:`aggr` argument and **utilize the power of aggregation within your GNN**.

.. note::

   You can read more about the :class:`torch_geometric.nn.aggr` package in this `blog post <https://medium.com/@pytorch_geometric/a-principled-approach-to-aggregations-983c086b10b3>`__.

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.aggr.classes %}
     {{ name }}
   {% endfor %}

Normalization Layers
--------------------

.. currentmodule:: torch_geometric.nn.norm

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.norm.classes %}
     {{ name }}
   {% endfor %}

Pooling Layers
--------------

.. currentmodule:: torch_geometric.nn.pool

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.pool.classes %}
     {{ name }}
   {% endfor %}

Unpooling Layers
----------------

.. currentmodule:: torch_geometric.nn.unpool

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.unpool.classes %}
     {{ name }}
   {% endfor %}

Models
------

.. currentmodule:: torch_geometric.nn.models

.. autosummary::
   :nosignatures:
   :toctree: ../generated
   :template: autosummary/nn.rst

   {% for name in torch_geometric.nn.models.classes %}
     {{ name }}
   {% endfor %}

KGE Models
----------

.. currentmodule:: torch_geometric.nn.kge

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.kge.classes %}
     {{ name }}
   {% endfor %}

Encodings
---------

.. automodule:: torch_geometric.nn.encoding
   :members:
   :undoc-members:
   :exclude-members: training

Functional
----------

.. py:currentmodule:: torch_geometric.nn.functional

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.functional.classes %}
     {{ name }}
   {% endfor %}

Dense Convolutional Layers
--------------------------

.. currentmodule:: torch_geometric.nn.dense

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.dense.conv_classes %}
     {{ name }}
   {% endfor %}

Dense Pooling Layers
--------------------

.. currentmodule:: torch_geometric.nn.dense

.. autosummary::
   :nosignatures:
   :toctree: ../generated

   {% for name in torch_geometric.nn.dense.pool_classes %}
     {{ name }}
   {% endfor %}

Model Transformations
---------------------

.. autoclass:: torch_geometric.nn.fx.Transformer
   :members:
   :undoc-members:
   :exclude-members: graph, find_by_target, find_by_name

.. autofunction:: torch_geometric.nn.to_hetero_transformer.to_hetero

.. autofunction:: torch_geometric.nn.to_hetero_with_bases_transformer.to_hetero_with_bases

DataParallel Layers
-------------------

.. automodule:: torch_geometric.nn.data_parallel
   :members:

Model Hub
---------

.. automodule:: torch_geometric.nn.model_hub
   :members:

Model Summary
-------------

.. automodule:: torch_geometric.nn.summary
   :members: