File: explain.rst

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (176 lines) | stat: -rw-r--r-- 9,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
Explaining Graph Neural Networks
================================

Interpreting GNN models is crucial for many use cases.
:pyg:`PyG` (2.3 and beyond) provides the :class:`torch_geometric.explain` package for first-class GNN explainability support that currently includes

#. a flexible interface to generate a variety of explanations via the :class:`~torch_geometric.explain.Explainer` class,

#. several underlying explanation algorithms including, *e.g.*, :class:`~torch_geometric.explain.algorithm.GNNExplainer`,  :class:`~torch_geometric.explain.algorithm.PGExplainer` and :class:`~torch_geometric.explain.algorithm.CaptumExplainer`,

#. support to visualize explanations via the :class:`~torch_geometric.explain.Explanation` or the :class:`~torch_geometric.explain.HeteroExplanation` class,

#. and metrics to evaluate explanations via the :class:`~torch_geometric.explain.metric` package.

.. warning::

   The explanation APIs discussed here may change in the future as we continuously work to improve their ease-of-use and generalizability.

Explainer Interface
-------------------

The :class:`torch_geometric.explain.Explainer` class is designed to handle all explainability parameters (see the :class:`~torch_geometric.explain.config.ExplainerConfig` class for more details):

#. which algorithm from the :class:`torch_geometric.explain.algorithm` module to use (*e.g.*, :class:`~torch_geometric.explain.algorithm.GNNExplainer`)

#. the type of explanation to compute, *i.e.* :obj:`explanation_type="phenomenon"` to explain the underlying phenomenon of a dataset, and :obj:`explanation_type="model"` to explain the prediction of a GNN model (see the `"GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks" <https://arxiv.org/abs/2206.09677>`_ paper for more details).

#. the different type of masks for node and edges (*e.g.*, :obj:`mask="object"` or :obj:`mask="attributes"`)

#. any postprocessing of the masks (*e.g.*, :obj:`threshold_type="topk"` or :obj:`threshold_type="hard"`)

This class allows the user to easily compare different explainability methods and to easily switch between different types of masks, while making sure the high-level framework stays the same.
The :class:`~torch_geometric.explain.Explainer` generates an :class:`~torch_geometric.explain.Explanation` or :class:`~torch_geometric.explain.HeteroExplanation` object which contains the final information about which nodes, edges and features are crucial to explain a GNN model.

.. note::

   You can read more about the :class:`torch_geometric.explain` package in this `blog post <https://medium.com/@pytorch_geometric/graph-machine-learning-explainability-with-pyg-ff13cffc23c2>`__.

Examples
--------

In what follows, we discuss a few use-cases with corresponding code examples.

Explaining node classification on a homogeneous graph
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Assume we have a GNN :obj:`model` that does node classification on a homogeneous graph.
We can use the :class:`torch_geometric.explain.algorithm.GNNExplainer` algorithm to generate an :class:`~torch_geometric.explain.Explanation`.
We configure the :class:`~torch_geometric.explain.Explainer` to use both a :obj:`node_mask_type` and an :obj:`edge_mask_type` such that the final :class:`~torch_geometric.explain.Explanation` object contains (1) a :obj:`node_mask` (indicating which nodes and features are crucial for prediction), and (2) an :obj:`edge_mask` (indicating which edges are crucial for prediction).

.. code-block:: python

    from torch_geometric.data import Data
    from torch_geometric.explain import Explainer, GNNExplainer

    data = Data(...)  # A homogeneous graph data object.

    explainer = Explainer(
        model=model,
        algorithm=GNNExplainer(epochs=200),
        explanation_type='model',
        node_mask_type='attributes',
        edge_mask_type='object',
        model_config=dict(
            mode='multiclass_classification',
            task_level='node',
            return_type='log_probs',  # Model returns log probabilities.
        ),
    )

    # Generate explanation for the node at index `10`:
    explanation = explainer(data.x, data.edge_index, index=10)
    print(explanation.edge_mask)
    print(explanation.node_mask)

Finally, we can visualize both feature importance and the crucial subgraph of the explanation:

.. code-block:: python

    explanation.visualize_feature_importance(top_k=10)

    explanation.visualize_graph()

To evaluate the explanation from the :class:`~torch_geometric.explain.algorithm.GNNExplainer`, we can utilize the :class:`torch_geometric.explain.metric` module.
For example, to compute the :meth:`~torch_geometric.explain.metric.unfaithfulness` of an explanation, run:

.. code-block:: python

    from torch_geometric.explain import unfaithfulness

    metric = unfaithfulness(explainer, explanation)
    print(metric)

Explaining node classification on a heterogeneous graph
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Assume we have a heterogeneous GNN :obj:`model` that does node classification on a heterogeneous graph.
We can use the :class:`IntegratedGradient` attribution method from :captum:`null` `Captum <https://captum.ai/docs/extension/integrated_gradients>`__ via the :class:`torch_geometric.explain.algorithm.CaptumExplainer` algorithm to generate a :class:`~torch_geometric.explain.HeteroExplanation`.

.. note::
    :class:`~torch_geometric.explain.algorithm.CaptumExplainer` is a wrapper around the :captum:`null` `Captum <https://captum.ai>`__ library with support for most of attribution methods to explain *any* homogeneous or heterogeneous :pyg:`PyG` model.

We configure the :class:`~torch_geometric.explain.Explainer` to use both a :obj:`node_mask_type` and an :obj:`edge_mask_type` such that the final :class:`~torch_geometric.explain.HeteroExplanation` object contains (1) a :obj:`node_mask` for *each* node type (indicating which nodes and features for each node type are crucial for prediction), and (2) an :obj:`edge_mask` for *each* edge type (indicating which edges for each edge type are crucial for prediction).

.. code-block:: python

    from torch_geometric.data import HeteroData
    from torch_geometric.explain import Explainer, CaptumExplainer

    hetero_data = HeteroData(...)  # A heterogeneous graph data object.

    explainer = Explainer(
        model,  # It is assumed that model outputs a single tensor.
        algorithm=CaptumExplainer('IntegratedGradients'),
        explanation_type='model',
        node_mask_type='attributes',
        edge_mask_type='object',
        model_config = dict(
            mode='multiclass_classification',
            task_level=task_level,
            return_type='probs',  # Model returns probabilities.
        ),
    )

    # Generate batch-wise heterogeneous explanations for
    # the nodes at index `1` and `3`:
    hetero_explanation = explainer(
        hetero_data.x_dict,
        hetero_data.edge_index_dict,
        index=torch.tensor([1, 3]),
    )
    print(hetero_explanation.edge_mask_dict)
    print(hetero_explanation.node_mask_dict)

Explaining graph regression on a homogeneous graph
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Assume we have a GNN :obj:`model` that does graph regression on a homogeneous graph.
We can use the :class:`torch_geometric.explain.algorithm.PGExplainer` algorithm to generate an :class:`~torch_geometric.explain.Explanation`.
We configure the :class:`~torch_geometric.explain.Explainer` to use an :obj:`edge_mask_type` such that the final :class:`~torch_geometric.explain.Explanation` object contains an :obj:`edge_mask` (indicating which edges are crucial for prediction).
Importantly, passing a :obj:`node_mask_type` to the :class:`~torch_geometric.explain.Explainer` will throw an error since :class:`~torch_geometric.explain.algorithm.PGExplainer` cannot explain the importance of nodes:

.. code-block:: python

    from torch_geometric.data import Data
    from torch_geometric.explain import Explainer, PGExplainer

    dataset = ...
    loader = DataLoader(dataset, batch_size=1, shuffle=True)

    explainer = Explainer(
        model=model,
        algorithm=PGExplainer(epochs=30, lr=0.003),
        explanation_type='phenomenon',
        edge_mask_type='object',
        model_config=dict(
            mode='regression',
            task_level='graph',
            return_type='raw',
        ),
        # Include only the top 10 most important edges:
        threshold_config=dict(threshold_type='topk', value=10),
    )

    # PGExplainer needs to be trained separately since it is a parametric
    # explainer i.e it uses a neural network to generate explanations:
    for epoch in range(30):
        for batch in loader:
            loss = explainer.algorithm.train(
                epoch, model, batch.x, batch.edge_index, target=batch.target)

    # Generate the explanation for a particular graph:
    explanation = explainer(dataset[0].x, dataset[0].edge_index)
    print(explanation.edge_mask)

Since this feature is still undergoing heavy development, please feel free to reach out to the :pyg:`PyG` core team either on :github:`null` `GitHub <https://github.com/pyg-team/pytorch_geometric/discussions>`_ or :slack:`null` `Slack <https://data.pyg.org/slack.html>`_ if you have any questions, comments or concerns.