File: heterogeneous.rst

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (503 lines) | stat: -rw-r--r-- 24,704 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
Heterogeneous Graph Learning
============================

A large set of real-world datasets are stored as heterogeneous graphs, motivating the introduction of specialized functionality for them in :pyg:`PyG`.
For example, most graphs in the area of recommendation, such as social graphs, are heterogeneous, as they store information about different types of entities and their different types of relations.
This tutorial introduces how heterogeneous graphs are mapped to :pyg:`PyG` and how they can be used as input to Graph Neural Network models.

Heterogeneous graphs come with different types of information attached to nodes and edges.
Thus, a single node or edge feature tensor cannot hold all node or edge features of the whole graph, due to differences in type and dimensionality.
Instead, a set of types need to be specified for nodes and edges, respectively, each having its own data tensors.
As a consequence of the different data structure, the message passing formulation changes accordingly, allowing the computation of message and update function conditioned on node or edge type.

Example Graph
-------------

As a guiding example, we take a look at the heterogeneous `ogbn-mag <https://ogb.stanford.edu/docs/nodeprop>`__ network from the :ogb:`null` `dataset suite <https://ogb.stanford.edu>`_:

.. image:: ../_figures/hg_example.svg
  :align: center
  :width: 500px

The given heterogeneous graph has 1,939,743 nodes, split between the four node types **author**, **paper**, **institution** and **field of study**.
It further has 21,111,007 edges, which also are of one of four types:

* **writes**: An author *writes* a specific paper
* **affiliated with**: An author is *affiliated with* a specific institution
* **cites**: A paper *cites* another paper
* **has topic**: A paper *has a topic* of a specific field of study

The task for this graph is to infer the venue of each paper (conference or journal) given the information stored in the graph.

Creating Heterogeneous Graphs
-----------------------------

First, we can create a data object of type :class:`torch_geometric.data.HeteroData`, for which we define node feature tensors, edge index tensors and edge feature tensors individually for each type:

.. code-block:: python

   from torch_geometric.data import HeteroData

   data = HeteroData()

   data['paper'].x = ... # [num_papers, num_features_paper]
   data['author'].x = ... # [num_authors, num_features_author]
   data['institution'].x = ... # [num_institutions, num_features_institution]
   data['field_of_study'].x = ... # [num_field, num_features_field]

   data['paper', 'cites', 'paper'].edge_index = ... # [2, num_edges_cites]
   data['author', 'writes', 'paper'].edge_index = ... # [2, num_edges_writes]
   data['author', 'affiliated_with', 'institution'].edge_index = ... # [2, num_edges_affiliated]
   data['paper', 'has_topic', 'field_of_study'].edge_index = ... # [2, num_edges_topic]

   data['paper', 'cites', 'paper'].edge_attr = ... # [num_edges_cites, num_features_cites]
   data['author', 'writes', 'paper'].edge_attr = ... # [num_edges_writes, num_features_writes]
   data['author', 'affiliated_with', 'institution'].edge_attr = ... # [num_edges_affiliated, num_features_affiliated]
   data['paper', 'has_topic', 'field_of_study'].edge_attr = ... # [num_edges_topic, num_features_topic]

Node or edge tensors will be automatically created upon first access and indexed by string keys.
Node types are identified by a single string while edge types are identified by using a triplet :obj:`(source_node_type, edge_type, destination_node_type)` of strings: the edge type identifier and the two node types between which the edge type can exist.
As such, the data object allows different feature dimensionalities for each type.

Dictionaries containing the heterogeneous information grouped by attribute names rather than by node or edge type can directly be accessed via :obj:`data.{attribute_name}_dict` and serve as input to GNN models later:

.. code-block:: python

    model = HeteroGNN(...)

    output = model(data.x_dict, data.edge_index_dict, data.edge_attr_dict)

If the dataset exists in the `list of Pytorch Geometric datasets <https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html>`_, it can directly be imported and used.
In particular, it will be downloaded to :obj:`root` and processed automatically.

.. code-block:: python

    from torch_geometric.datasets import OGB_MAG

    dataset = OGB_MAG(root='./data', preprocess='metapath2vec')
    data = dataset[0]

The :obj:`data` object can be printed for verification.

.. code-block:: text

    HeteroData(
      paper={
        x=[736389, 128],
        y=[736389],
        train_mask=[736389],
        val_mask=[736389],
        test_mask=[736389]
      },
      author={ x=[1134649, 128] },
      institution={ x=[8740, 128] },
      field_of_study={ x=[59965, 128] },
      (author, affiliated_with, institution)={ edge_index=[2, 1043998] },
      (author, writes, paper)={ edge_index=[2, 7145660] },
      (paper, cites, paper)={ edge_index=[2, 5416271] },
      (paper, has_topic, field_of_study)={ edge_index=[2, 7505078] }
    )

.. note::

   The original `ogbn-mag <https://ogb.stanford.edu/docs/nodeprop>`__ network does only provide features for "paper" nodes.
   In :class:`~torch_geometric.datasets.OGB_MAG`, we provide the option to download a processed version of it in which structural features (obtained from either :obj:`"metapath2vec"` or :obj:`"TransE"`) are added to featureless nodes, as it is commonly done in the top ranked submissions to the `OGB leaderboards <https://ogb.stanford.edu/docs/leader_nodeprop>`_.

Utility Functions
~~~~~~~~~~~~~~~~~

The :class:`torch_geometric.data.HeteroData` class provides a number of useful utility functions to modify and analyze the given graph.

For example, single node or edge stores can be indiviually indexed:

.. code-block:: python

    paper_node_data = data['paper']
    cites_edge_data = data['paper', 'cites', 'paper']

In case the edge type can be uniquely identified by only the pair of source and destination node types or the edge type, the following operations work as well:

.. code-block:: python

    cites_edge_data = data['paper', 'paper']
    cites_edge_data = data['cites']

We can add new node types or tensors and remove them:

.. code-block:: python

    data['paper'].year = ...    # Setting a new paper attribute
    del data['field_of_study']  # Deleting 'field_of_study' node type
    del data['has_topic']       # Deleting 'has_topic' edge type

We can access the meta-data of the :obj:`data` object, holding information of all present node and edge types:

.. code-block:: python

    node_types, edge_types = data.metadata()
    print(node_types)
    ['paper', 'author', 'institution']
    print(edge_types)
    [('paper', 'cites', 'paper'),
    ('author', 'writes', 'paper'),
    ('author', 'affiliated_with', 'institution')]

The :obj:`data` object can be transferred between devices as usual:

.. code-block:: python

    data = data.to('cuda:0')
    data = data.cpu()

We further have access to additional helper functions to analyze the given graph

.. code-block:: python

    data.has_isolated_nodes()
    data.has_self_loops()
    data.is_undirected()

and can convert it to a homogeneous "typed" graph via :meth:`~torch_geometric.data.HeteroData.to_homogeneous` which is able to maintain features in case their dimensionalities match across different types:

.. code-block:: python

    homogeneous_data = data.to_homogeneous()
    print(homogeneous_data)
    Data(x=[1879778, 128], edge_index=[2, 13605929], edge_type=[13605929])

Here, :obj:`homogeneous_data.edge_type` represents an edge-level vector that holds the edge type of each edge as an integer.

Heterogeneous Graph Transformations
-----------------------------------

Most `transformations <https://pytorch-geometric.readthedocs.io/en/latest/modules/transforms.html>`_ for preprocessing regular graphs work as well on the heterogeneous graph :obj:`data` object.

.. code-block:: python

    import torch_geometric.transforms as T

    data = T.ToUndirected()(data)
    data = T.AddSelfLoops()(data)
    data = T.NormalizeFeatures()(data)

Here, :meth:`~torch_geometric.transforms.ToUndirected` transforms a directed graph into (the :pyg:`PyG` representation of) an undirected graph, by adding reverse edges for all edges in the graph.
Thus, future message passing is performed in both direction of all edges.
The function may add reverse edge types to the heterogeneous graph, if necessary.

For all nodes of type :obj:`'node_type'` and all existing edge types of the form :obj:`('node_type', 'edge_type', 'node_type')`, the function :meth:`~torch_geometric.transforms.AddSelfLoops` will add self-loop edges.
As a result, each node might receive one or more (one per appropriate edge type) messages from itself during message passing.

The transform :meth:`~torch_geometric.transforms.NormalizeFeatures` works like in the homogeneous case, and normalizes all specified features (of all types) to sum up to one.

Creating Heterogeneous GNNs
---------------------------

Standard Message Passing GNNs (MP-GNNs) can not trivially be applied to heterogeneous graph data, as node and edge features from different types can not be processed by the same functions due to differences in feature type.
A natural way to circumvent this is to implement message and update functions individually for each edge type.
During runtime, the MP-GNN algorithm would need to iterate over edge type dictionaries during message computation and over node type dictionaries during node updates.

To avoid unnecessary runtime overheads and to make the creation of heterogeneous MP-GNNs as simple as possible, Pytorch Geometric provides three ways for the user to create models on heterogeneous graph data:

#. Automatically convert a homogeneous GNN model to a heterogeneous GNN model by making use of :meth:`torch_geometric.nn.to_hetero` or :meth:`torch_geometric.nn.to_hetero_with_bases`
#. Define individual functions for different types using :pyg:`PyG's` wrapper :class:`torch_geometric.nn.conv.HeteroConv` for heterogeneous convolution
#. Deploy existing (or write your own) heterogeneous GNN operators

In the following, each option is introduced in detail.

Automatically Converting GNN Models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pytorch Geometric allows to automatically convert any :pyg:`PyG` GNN model to a model for heterogeneous input graphs, using the built in functions :meth:`torch_geometric.nn.to_hetero` or :meth:`torch_geometric.nn.to_hetero_with_bases`.
The following `example <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py>`__ shows how to apply it:

.. code-block:: python

    import torch_geometric.transforms as T
    from torch_geometric.datasets import OGB_MAG
    from torch_geometric.nn import SAGEConv, to_hetero


    dataset = OGB_MAG(root='./data', preprocess='metapath2vec', transform=T.ToUndirected())
    data = dataset[0]

    class GNN(torch.nn.Module):
        def __init__(self, hidden_channels, out_channels):
            super().__init__()
            self.conv1 = SAGEConv((-1, -1), hidden_channels)
            self.conv2 = SAGEConv((-1, -1), out_channels)

        def forward(self, x, edge_index):
            x = self.conv1(x, edge_index).relu()
            x = self.conv2(x, edge_index)
            return x


    model = GNN(hidden_channels=64, out_channels=dataset.num_classes)
    model = to_hetero(model, data.metadata(), aggr='sum')

The process takes an existing GNN model and duplicates the message functions to work on each edge type individually, as detailed in the following figure.

.. image:: ../_figures/to_hetero.svg
   :align: center
   :width: 90%

As a result, the model now expects dictionaries with node and edge types as keys as input arguments, rather than single tensors utilized in homogeneous graphs.
Note that we pass in a tuple of :obj:`in_channels` to :class:`~torch_geometric.nn.conv.SAGEConv` in order to allow for message passing in bipartite graphs.

.. _lazyinit:

.. note::
   Since the number of input features and thus the size of tensors varies between different types, :pyg:`PyG` can make use of **lazy initialization** to initialize parameters in heterogeneous GNNs (as denoted by :obj:`-1` as the :obj:`in_channels` argument).
   This allows us to avoid calculating and keeping track of all tensor sizes of the computation graph.
   Lazy initialization is supported for all existing :pyg:`PyG` operators.
   We can initialize the model's parameters by calling it once:

   .. code-block:: python

        with torch.no_grad():  # Initialize lazy modules.
            out = model(data.x_dict, data.edge_index_dict)

Both :meth:`~torch_geometric.nn.to_hetero` and :meth:`~torch_geometric.nn.to_hetero_with_bases` are very flexible with respect to the homogeneous architectures that can be automatically converted to heterogeneous ones, *e.g.*, applying skip-connections, jumping knowledge or other techniques are supported out-of-the-box.
For example, this is all it takes to implement a heterogeneous graph attention network with learnable skip-connections:

.. code-block:: python

    from torch_geometric.nn import GATConv, Linear, to_hetero

    class GAT(torch.nn.Module):
        def __init__(self, hidden_channels, out_channels):
            super().__init__()
            self.conv1 = GATConv((-1, -1), hidden_channels, add_self_loops=False)
            self.lin1 = Linear(-1, hidden_channels)
            self.conv2 = GATConv((-1, -1), out_channels, add_self_loops=False)
            self.lin2 = Linear(-1, out_channels)

        def forward(self, x, edge_index):
            x = self.conv1(x, edge_index) + self.lin1(x)
            x = x.relu()
            x = self.conv2(x, edge_index) + self.lin2(x)
            return x


    model = GAT(hidden_channels=64, out_channels=dataset.num_classes)
    model = to_hetero(model, data.metadata(), aggr='sum')

Note that we disable the creation of self loops via the :obj:`add_self_loops=False` argument.
This is done because the concept of self-loops is not well-defined in bipartite graphs (message passing for an edge type with distinct source and destination node types), and we would mistakenly add the edges :obj:`[(0, 0), (1, 1), ...]` to the bipartite graph.
To preserve central node information, we thus utilize a learnable skip-connection via :obj:`conv(x, edge_index) + lin(x)` instead, which will perform attention-based message passing from source to destination node features, and its output is then summed up to the existing destination node features.

Afterwards, the created model can be trained as usual:

.. _trainfunc:

.. code-block:: python

    def train():
        model.train()
        optimizer.zero_grad()
        out = model(data.x_dict, data.edge_index_dict)
        mask = data['paper'].train_mask
        loss = F.cross_entropy(out['paper'][mask], data['paper'].y[mask])
        loss.backward()
        optimizer.step()
        return float(loss)

Using the Heterogeneous Convolution Wrapper
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The heterogeneous convolution wrapper :class:`torch_geometric.nn.conv.HeteroConv` allows to define custom heterogeneous message and update functions to build arbitrary MP-GNNs for heterogeneous graphs from scratch.
While the automatic converter :meth:`~torch_geometric.nn.to_hetero` uses the same operator for all edge types, the wrapper allows to define different operators for different edge types.
Here, :class:`~torch_geometric.nn.conv.HeteroConv` takes a dictionary of submodules as input, one for each edge type in the graph data.
The following `example <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/hetero_conv_dblp.py>`__ shows how to apply it.

.. code-block:: python

    import torch_geometric.transforms as T
    from torch_geometric.datasets import OGB_MAG
    from torch_geometric.nn import HeteroConv, GCNConv, SAGEConv, GATConv, Linear


    dataset = OGB_MAG(root='./data', preprocess='metapath2vec', transform=T.ToUndirected())
    data = dataset[0]

    class HeteroGNN(torch.nn.Module):
        def __init__(self, hidden_channels, out_channels, num_layers):
            super().__init__()

            self.convs = torch.nn.ModuleList()
            for _ in range(num_layers):
                conv = HeteroConv({
                    ('paper', 'cites', 'paper'): GCNConv(-1, hidden_channels),
                    ('author', 'writes', 'paper'): SAGEConv((-1, -1), hidden_channels),
                    ('paper', 'rev_writes', 'author'): GATConv((-1, -1), hidden_channels, add_self_loops=False),
                }, aggr='sum')
                self.convs.append(conv)

            self.lin = Linear(hidden_channels, out_channels)

        def forward(self, x_dict, edge_index_dict):
            for conv in self.convs:
                x_dict = conv(x_dict, edge_index_dict)
                x_dict = {key: x.relu() for key, x in x_dict.items()}
            return self.lin(x_dict['author'])

    model = HeteroGNN(hidden_channels=64, out_channels=dataset.num_classes,
                      num_layers=2)

We can initialize the model by calling it once (see :ref:`here<lazyinit>` for more details about lazy initialization)

.. code-block:: python

    with torch.no_grad():  # Initialize lazy modules.
         out = model(data.x_dict, data.edge_index_dict)

and run the standard training procedure as outlined :ref:`here<trainfunc>`.

Deploy Existing Heterogeneous Operators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:pyg:`PyG` provides operators (*e.g.*, :class:`torch_geometric.nn.conv.HGTConv`), which are specifically designed for heterogeneous graphs.
These operators can be directly used to build heterogeneous GNN models as can be seen in the following `example <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/hgt_dblp.py>`__:

.. code-block:: python

    import torch_geometric.transforms as T
    from torch_geometric.datasets import OGB_MAG
    from torch_geometric.nn import HGTConv, Linear


    dataset = OGB_MAG(root='./data', preprocess='metapath2vec', transform=T.ToUndirected())
    data = dataset[0]

    class HGT(torch.nn.Module):
        def __init__(self, hidden_channels, out_channels, num_heads, num_layers):
            super().__init__()

            self.lin_dict = torch.nn.ModuleDict()
            for node_type in data.node_types:
                self.lin_dict[node_type] = Linear(-1, hidden_channels)

            self.convs = torch.nn.ModuleList()
            for _ in range(num_layers):
                conv = HGTConv(hidden_channels, hidden_channels, data.metadata(),
                               num_heads, group='sum')
                self.convs.append(conv)

            self.lin = Linear(hidden_channels, out_channels)

        def forward(self, x_dict, edge_index_dict):
            for node_type, x in x_dict.items():
                x_dict[node_type] = self.lin_dict[node_type](x).relu_()

            for conv in self.convs:
                x_dict = conv(x_dict, edge_index_dict)

            return self.lin(x_dict['author'])

    model = HGT(hidden_channels=64, out_channels=dataset.num_classes,
                num_heads=2, num_layers=2)

We can initialize the model by calling it once (see :ref:`here<lazyinit>` for more details about lazy initialization).

.. code-block:: python

    with torch.no_grad():  # Initialize lazy modules.
         out = model(data.x_dict, data.edge_index_dict)

and run the standard training procedure as outlined :ref:`here<trainfunc>`.

Heterogeneous Graph Samplers
----------------------------

:pyg:`PyG` provides various functionalities for sampling heterogeneous graphs, *i.e.* in the standard :class:`torch_geometric.loader.NeighborLoader` class  or in dedicated heterogeneous graph samplers such as :class:`torch_geometric.loader.HGTLoader`.
This is especially useful for efficient representation learning on large heterogeneous graphs, where processing the full number of neighbors is too computationally expensive.
Heterogeneous graph support for other samplers such as :class:`torch_geometric.loader.ClusterLoader` or :class:`torch_geometric.loader.GraphSAINTLoader` will be added soon.
Overall, all heterogeneous graph loaders will produce a :class:`~torch_geometric.data.HeteroData` object as output, holding a subset of the original data, and mainly differ in the way their sampling procedures works.
As such, only minimal code changes are required to convert the training procedure from :ref:`full-batch training<trainfunc>` to mini-batch training.

Performing neighbor sampling using :class:`~torch_geometric.loader.NeighborLoader` works as outlined in the following `example <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py>`__:

.. code-block:: python

    import torch_geometric.transforms as T
    from torch_geometric.datasets import OGB_MAG
    from torch_geometric.loader import NeighborLoader

    transform = T.ToUndirected()  # Add reverse edge types.
    data = OGB_MAG(root='./data', preprocess='metapath2vec', transform=transform)[0]

    train_loader = NeighborLoader(
        data,
        # Sample 15 neighbors for each node and each edge type for 2 iterations:
        num_neighbors=[15] * 2,
        # Use a batch size of 128 for sampling training nodes of type "paper":
        batch_size=128,
        input_nodes=('paper', data['paper'].train_mask),
    )

    batch = next(iter(train_loader))


Notably, :class:`~torch_geometric.loader.NeighborLoader` works for both homogeneous *and* heterogeneous graphs.
When operating in heterogeneous graphs, more fine-grained control over the amount of sampled neighbors of individual edge types is possible, but not necessary, *e.g.*:

.. code-block:: python

    num_neighbors = {key: [15] * 2 for key in data.edge_types}

Using the :obj:`input_nodes` argument, we further specify the type and indices of nodes from which we want to sample local neighborhoods, *i.e.* all the "paper" nodes marked as training nodes according to :obj:`data['paper'].train_mask`.

Printing :obj:`batch` then yields the following output:

.. code-block:: text

    HeteroData(
      paper={
        x=[20799, 256],
        y=[20799],
        train_mask=[20799],
        val_mask=[20799],
        test_mask=[20799],
        batch_size=128
      },
      author={ x=[4419, 128] },
      institution={ x=[302, 128] },
      field_of_study={ x=[2605, 128] },
      (author, affiliated_with, institution)={ edge_index=[2, 0] },
      (author, writes, paper)={ edge_index=[2, 5927] },
      (paper, cites, paper)={ edge_index=[2, 11829] },
      (paper, has_topic, field_of_study)={ edge_index=[2, 10573] },
      (institution, rev_affiliated_with, author)={ edge_index=[2, 829] },
      (paper, rev_writes, author)={ edge_index=[2, 5512] },
      (field_of_study, rev_has_topic, paper)={ edge_index=[2, 10499] }
    )

As such, :obj:`batch` holds a total of 28,187 nodes involved for computing the embeddings of 128 "paper" nodes.
Sampled nodes are always sorted based on the order in which they were sampled.
Thus, the first :obj:`batch['paper'].batch_size` nodes represent the set of original mini-batch nodes, making it easy to obtain the final output embeddings via slicing.

Training our heterogeneous GNN model in mini-batch mode is then similar to training it in full-batch mode, except that we now iterate over the mini-batches produced by :obj:`train_loader` and optimize model parameters based on individual mini-batches:

.. code-block:: python

    def train():
        model.train()

        total_examples = total_loss = 0
        for batch in train_loader:
            optimizer.zero_grad()
            batch = batch.to('cuda:0')
            batch_size = batch['paper'].batch_size
            out = model(batch.x_dict, batch.edge_index_dict)
            loss = F.cross_entropy(out['paper'][:batch_size],
                                   batch['paper'].y[:batch_size])
            loss.backward()
            optimizer.step()

            total_examples += batch_size
            total_loss += float(loss) * batch_size

        return total_loss / total_examples

Importantly, we only make use of the first 128 "paper" nodes during loss computation.
We do so by slicing both "paper" labels :obj:`batch['paper'].y` and "paper" output predictions :obj:`out['paper']` based on :obj:`batch['paper'].batch_size`, representing the labels and final output predictions of original mini-batch nodes, respectively.