1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
Loading Graphs from CSV
=======================
In this example, we will show how to load a set of :obj:`*.csv` files as input and construct a **heterogeneous graph** from it, which can be used as input to a `heterogeneous graph model <heterogeneous.html>`__.
This tutorial is also available as an executable `example script <https://github.com/pyg-team/pytorch_geometric/tree/master/examples/hetero/load_csv.py>`_ in the :obj:`examples/hetero` directory.
We are going to use the `MovieLens dataset <https://grouplens.org/datasets/movielens/>`_ collected by the GroupLens research group.
This toy dataset describes 5-star rating and tagging activity from MovieLens.
The dataset contains approximately 100k ratings across more than 9k movies from more than 600 users.
We are going to use this dataset to generate two node types holding data for **movies** and **users**, respectively, and one edge type connecting **users and movies**, representing the relation of how a user has rated a specific movie.
First, we download the dataset to an arbitrary folder (in this case, the current directory):
.. code-block:: python
from torch_geometric.data import download_url, extract_zip
url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip'
extract_zip(download_url(url, '.'), '.')
movie_path = './ml-latest-small/movies.csv'
rating_path = './ml-latest-small/ratings.csv'
Before we create the heterogeneous graph, let's take a look at the data.
.. code-block:: python
import pandas as pd
print(pd.read_csv(movie_path).head())
print(pd.read_csv(rating_path).head())
.. list-table:: Head of :obj:`movies.csv`
:widths: 5 40 60
:header-rows: 1
* - movieId
- title
- genres
* - 1
- Toy Story (1995)
- Adventure|Animation|Children|Comedy|Fantasy
* - 2
- Jumanji (1995)
- Adventure|Children|Fantasy
* - 3
- Grumpier Old Men (1995)
- Comedy|Romance
* - 4
- Waiting to Exhale (1995)
- Comedy|Drama|Romance
* - 5
- Father of the Bride Part II (1995)
- Comedy
We see that the :obj:`movies.csv` file provides three columns: :obj:`movieId` assigns a unique identifier to each movie, while the :obj:`title` and :obj:`genres` columns represent title and genres of the given movie.
We can make use of those two columns to define a feature representation that can be easily interpreted by machine learning models.
.. list-table:: Head of :obj:`ratings.csv`
:widths: 5 5 10 30
:header-rows: 1
* - userId
- movieId
- rating
- timestamp
* - 1
- 1
- 4.0
- 964982703
* - 1
- 3
- 4.0
- 964981247
* - 1
- 6
- 4.0
- 964982224
* - 1
- 47
- 5.0
- 964983815
* - 1
- 50
- 5.0
- 964982931
The :obj:`ratings.csv` data connects users (as given by :obj:`userId`) and movies (as given by :obj:`movieId`), and defines how a given user has rated a specific movie (:obj:`rating`).
Due to simplicity, we do not make use of the additional :obj:`timestamp` information.
For representing this data in the :pyg:`PyG` data format, we first define a method :meth:`load_node_csv` that reads in a :obj:`*.csv` file and returns a node-level feature representation :obj:`x` of shape :obj:`[num_nodes, num_features]`:
.. code-block:: python
import torch
def load_node_csv(path, index_col, encoders=None, **kwargs):
df = pd.read_csv(path, index_col=index_col, **kwargs)
mapping = {index: i for i, index in enumerate(df.index.unique())}
x = None
if encoders is not None:
xs = [encoder(df[col]) for col, encoder in encoders.items()]
x = torch.cat(xs, dim=-1)
return x, mapping
Here, :meth:`load_node_csv` reads the :obj:`*.csv` file from :obj:`path`, and creates a dictionary :obj:`mapping` that maps its index column to a consecutive value in the range :obj:`{ 0, ..., num_rows - 1 }`.
This is needed as we want our final data representation to be as compact as possible, *e.g.*, the representation of a movie in the first row should be accessible via :obj:`x[0]`.
We further utilize the concept of encoders, which define how the values of specific columns should be encoded into a numerical feature representation.
For example, we can define a sentence encoder that encodes raw column strings into low-dimensional embeddings.
For this, we make use of the excellent `sentence-transformers <https://www.sbert.net/>`_ library which provides a large number of state-of-the-art pretrained NLP embedding models:
.. code-block:: bash
pip install sentence-transformers
.. code-block:: python
class SequenceEncoder:
def __init__(self, model_name='all-MiniLM-L6-v2', device=None):
self.device = device
self.model = SentenceTransformer(model_name, device=device)
@torch.no_grad()
def __call__(self, df):
x = self.model.encode(df.values, show_progress_bar=True,
convert_to_tensor=True, device=self.device)
return x.cpu()
The :class:`SequenceEncoder` class loads a pre-trained NLP model as given by :obj:`model_name`, and uses it to encode a list of strings into a :pytorch:`PyTorch` tensor of shape :obj:`[num_strings, embedding_dim]`.
We can use this :class:`SequenceEncoder` to encode the :obj:`title` of the :obj:`movies.csv` file.
In a similar fashion, we can create another encoder that converts the genres of movies, *e.g.*, :obj:`Adventure|Children|Fantasy`, into categorical labels.
For this, we first need to find all existing genres present in the data, create a feature representation :obj:`x` of shape :obj:`[num_movies, num_genres]`, and assign a :obj:`1` to :obj:`x[i, j]` in case the genre :obj:`j` is present in movie :obj:`i`:
.. code-block:: python
class GenresEncoder:
def __init__(self, sep='|'):
self.sep = sep
def __call__(self, df):
genres = set(g for col in df.values for g in col.split(self.sep))
mapping = {genre: i for i, genre in enumerate(genres)}
x = torch.zeros(len(df), len(mapping))
for i, col in enumerate(df.values):
for genre in col.split(self.sep):
x[i, mapping[genre]] = 1
return x
With this, we can obtain our final representation of movies via:
.. code-block:: python
movie_x, movie_mapping = load_node_csv(
movie_path, index_col='movieId', encoders={
'title': SequenceEncoder(),
'genres': GenresEncoder()
})
Similarly, we can utilize :meth:`load_node_csv` for obtaining a user mapping from :obj:`userId` to consecutive values as well.
However, there is no additional feature information for users present in this dataset.
As such, we do not define any encoders:
.. code-block:: python
_, user_mapping = load_node_csv(rating_path, index_col='userId')
With this, we are ready to initialize our :class:`~torch_geometric.data.HeteroData` object and pass two node types into it:
.. code-block:: python
from torch_geometric.data import HeteroData
data = HeteroData()
data['user'].num_nodes = len(user_mapping) # Users do not have any features.
data['movie'].x = movie_x
print(data)
HeteroData(
user={ num_nodes=610 },
movie={ x[9742, 404] }
)
As users do not have any node-level information, we solely define its number of nodes.
As a result, we likely need to learn distinct user embeddings via :class:`torch.nn.Embedding` in an end-to-end fashion during training of a heterogeneous graph model.
Next, we take a look at connecting users with movies as defined by their ratings.
For this, we define a method :meth:`load_edge_csv` that returns the final :obj:`edge_index` representation of shape :obj:`[2, num_ratings]` from :obj:`ratings.csv`, as well as any additional features present in the raw :obj:`*.csv` file:
.. code-block:: python
def load_edge_csv(path, src_index_col, src_mapping, dst_index_col, dst_mapping,
encoders=None, **kwargs):
df = pd.read_csv(path, **kwargs)
src = [src_mapping[index] for index in df[src_index_col]]
dst = [dst_mapping[index] for index in df[dst_index_col]]
edge_index = torch.tensor([src, dst])
edge_attr = None
if encoders is not None:
edge_attrs = [encoder(df[col]) for col, encoder in encoders.items()]
edge_attr = torch.cat(edge_attrs, dim=-1)
return edge_index, edge_attr
Here, :obj:`src_index_col` and :obj:`dst_index_col` define the index columns of source and destination nodes, respectively.
We further make use of the node-level mappings :obj:`src_mapping` and :obj:`dst_mapping` to ensure that raw indices are mapped to the correct consecutive indices in our final representation.
For every edge defined in the file, it looks up the forward indices in :obj:`src_mapping` and :obj:`dst_mapping`, and moves the data appropriately.
Similarly to :meth:`load_node_csv`, encoders are used to return additional edge-level feature information.
For example, for loading the ratings from the :obj:`rating` column in :obj:`ratings.csv`, we can define an :class:`IdentityEncoder` that simply converts a list of floating-point values into a :pytorch:`PyTorch` tensor:
.. code-block:: python
class IdentityEncoder:
def __init__(self, dtype=None):
self.dtype = dtype
def __call__(self, df):
return torch.from_numpy(df.values).view(-1, 1).to(self.dtype)
With this, we are ready to finalize our :class:`~torch_geometric.data.HeteroData` object:
.. code-block:: python
edge_index, edge_label = load_edge_csv(
rating_path,
src_index_col='userId',
src_mapping=user_mapping,
dst_index_col='movieId',
dst_mapping=movie_mapping,
encoders={'rating': IdentityEncoder(dtype=torch.long)},
)
data['user', 'rates', 'movie'].edge_index = edge_index
data['user', 'rates', 'movie'].edge_label = edge_label
print(data)
HeteroData(
user={ num_nodes=610 },
movie={ x=[9742, 404] },
(user, rates, movie)={
edge_index=[2, 100836],
edge_label=[100836, 1]
}
)
This :class:`~torch_geometric.data.HeteroData` object is the native format of heterogeneous graphs in :pyg:`PyG` and can be used as input for `heterogeneous graph models <heterogeneous.html>`__.
.. note::
Click `here <https://github.com/pyg-team/pytorch_geometric/tree/master/examples/hetero/load_csv.py>`_ to see the final example script.
|