1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
import os.path as osp
import matplotlib.pyplot as plt
import torch
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.metrics.cluster import (
completeness_score,
homogeneity_score,
v_measure_score,
)
from torch.nn import Linear
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import ARGVA, GCNConv
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
transform = T.Compose([
T.ToDevice(device),
T.RandomLinkSplit(num_val=0.05, num_test=0.1, is_undirected=True,
split_labels=True, add_negative_train_samples=False),
])
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Planetoid')
dataset = Planetoid(path, name='Cora', transform=transform)
train_data, val_data, test_data = dataset[0]
class Encoder(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = GCNConv(in_channels, hidden_channels)
self.conv_mu = GCNConv(hidden_channels, out_channels)
self.conv_logstd = GCNConv(hidden_channels, out_channels)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
return self.conv_mu(x, edge_index), self.conv_logstd(x, edge_index)
class Discriminator(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.lin1 = Linear(in_channels, hidden_channels)
self.lin2 = Linear(hidden_channels, hidden_channels)
self.lin3 = Linear(hidden_channels, out_channels)
def forward(self, x):
x = self.lin1(x).relu()
x = self.lin2(x).relu()
return self.lin3(x)
encoder = Encoder(train_data.num_features, hidden_channels=32, out_channels=32)
discriminator = Discriminator(in_channels=32, hidden_channels=64,
out_channels=32)
model = ARGVA(encoder, discriminator).to(device)
encoder_optimizer = torch.optim.Adam(encoder.parameters(), lr=0.005)
discriminator_optimizer = torch.optim.Adam(discriminator.parameters(),
lr=0.001)
def train():
model.train()
encoder_optimizer.zero_grad()
z = model.encode(train_data.x, train_data.edge_index)
# We optimize the discriminator more frequently than the encoder.
for i in range(5):
discriminator_optimizer.zero_grad()
discriminator_loss = model.discriminator_loss(z)
discriminator_loss.backward()
discriminator_optimizer.step()
loss = model.recon_loss(z, train_data.pos_edge_label_index)
loss = loss + model.reg_loss(z)
loss = loss + (1 / train_data.num_nodes) * model.kl_loss()
loss.backward()
encoder_optimizer.step()
return float(loss)
@torch.no_grad()
def test(data):
model.eval()
z = model.encode(data.x, data.edge_index)
# Cluster embedded values using k-means.
kmeans_input = z.cpu().numpy()
kmeans = KMeans(n_clusters=7, random_state=0,
n_init='auto').fit(kmeans_input)
pred = kmeans.predict(kmeans_input)
labels = data.y.cpu().numpy()
completeness = completeness_score(labels, pred)
hm = homogeneity_score(labels, pred)
nmi = v_measure_score(labels, pred)
auc, ap = model.test(z, data.pos_edge_label_index,
data.neg_edge_label_index)
return auc, ap, completeness, hm, nmi
for epoch in range(1, 151):
loss = train()
auc, ap, completeness, hm, nmi = test(test_data)
print(f'Epoch: {epoch:03d}, Loss: {loss:.3f}, AUC: {auc:.3f}, '
f'AP: {ap:.3f}, Completeness: {completeness:.3f}, '
f'Homogeneity: {hm:.3f}, NMI: {nmi:.3f}')
@torch.no_grad()
def plot_points(data, colors):
model.eval()
z = model.encode(data.x, data.edge_index)
z = TSNE(n_components=2).fit_transform(z.cpu().numpy())
y = data.y.cpu().numpy()
plt.figure(figsize=(8, 8))
for i in range(dataset.num_classes):
plt.scatter(z[y == i, 0], z[y == i, 1], s=20, color=colors[i])
plt.axis('off')
plt.show()
colors = [
'#ffc0cb', '#bada55', '#008080', '#420420', '#7fe5f0', '#065535', '#ffd700'
]
plot_points(test_data, colors)
|