1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import os.path as osp
from math import sqrt
import torch
import torch.nn.functional as F
from rdkit import Chem
from torch_geometric.datasets import MoleculeNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn.models import AttentiveFP
class GenFeatures:
def __init__(self):
self.symbols = [
'B', 'C', 'N', 'O', 'F', 'Si', 'P', 'S', 'Cl', 'As', 'Se', 'Br',
'Te', 'I', 'At', 'other'
]
self.hybridizations = [
Chem.rdchem.HybridizationType.SP,
Chem.rdchem.HybridizationType.SP2,
Chem.rdchem.HybridizationType.SP3,
Chem.rdchem.HybridizationType.SP3D,
Chem.rdchem.HybridizationType.SP3D2,
'other',
]
self.stereos = [
Chem.rdchem.BondStereo.STEREONONE,
Chem.rdchem.BondStereo.STEREOANY,
Chem.rdchem.BondStereo.STEREOZ,
Chem.rdchem.BondStereo.STEREOE,
]
def __call__(self, data):
# Generate AttentiveFP features according to Table 1.
mol = Chem.MolFromSmiles(data.smiles)
xs = []
for atom in mol.GetAtoms():
symbol = [0.] * len(self.symbols)
symbol[self.symbols.index(atom.GetSymbol())] = 1.
degree = [0.] * 6
degree[atom.GetDegree()] = 1.
formal_charge = atom.GetFormalCharge()
radical_electrons = atom.GetNumRadicalElectrons()
hybridization = [0.] * len(self.hybridizations)
hybridization[self.hybridizations.index(
atom.GetHybridization())] = 1.
aromaticity = 1. if atom.GetIsAromatic() else 0.
hydrogens = [0.] * 5
hydrogens[atom.GetTotalNumHs()] = 1.
chirality = 1. if atom.HasProp('_ChiralityPossible') else 0.
chirality_type = [0.] * 2
if atom.HasProp('_CIPCode'):
chirality_type[['R', 'S'].index(atom.GetProp('_CIPCode'))] = 1.
x = torch.tensor(symbol + degree + [formal_charge] +
[radical_electrons] + hybridization +
[aromaticity] + hydrogens + [chirality] +
chirality_type)
xs.append(x)
data.x = torch.stack(xs, dim=0)
edge_indices = []
edge_attrs = []
for bond in mol.GetBonds():
edge_indices += [[bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()]]
edge_indices += [[bond.GetEndAtomIdx(), bond.GetBeginAtomIdx()]]
bond_type = bond.GetBondType()
single = 1. if bond_type == Chem.rdchem.BondType.SINGLE else 0.
double = 1. if bond_type == Chem.rdchem.BondType.DOUBLE else 0.
triple = 1. if bond_type == Chem.rdchem.BondType.TRIPLE else 0.
aromatic = 1. if bond_type == Chem.rdchem.BondType.AROMATIC else 0.
conjugation = 1. if bond.GetIsConjugated() else 0.
ring = 1. if bond.IsInRing() else 0.
stereo = [0.] * 4
stereo[self.stereos.index(bond.GetStereo())] = 1.
edge_attr = torch.tensor(
[single, double, triple, aromatic, conjugation, ring] + stereo)
edge_attrs += [edge_attr, edge_attr]
if len(edge_attrs) == 0:
data.edge_index = torch.zeros((2, 0), dtype=torch.long)
data.edge_attr = torch.zeros((0, 10), dtype=torch.float)
else:
data.edge_index = torch.tensor(edge_indices).t().contiguous()
data.edge_attr = torch.stack(edge_attrs, dim=0)
return data
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'AFP_Mol')
dataset = MoleculeNet(path, name='ESOL', pre_transform=GenFeatures()).shuffle()
N = len(dataset) // 10
val_dataset = dataset[:N]
test_dataset = dataset[N:2 * N]
train_dataset = dataset[2 * N:]
train_loader = DataLoader(train_dataset, batch_size=200, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=200)
test_loader = DataLoader(test_dataset, batch_size=200)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AttentiveFP(in_channels=39, hidden_channels=200, out_channels=1,
edge_dim=10, num_layers=2, num_timesteps=2,
dropout=0.2).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=10**-2.5,
weight_decay=10**-5)
def train():
total_loss = total_examples = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index, data.edge_attr, data.batch)
loss = F.mse_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += float(loss) * data.num_graphs
total_examples += data.num_graphs
return sqrt(total_loss / total_examples)
@torch.no_grad()
def test(loader):
mse = []
for data in loader:
data = data.to(device)
out = model(data.x, data.edge_index, data.edge_attr, data.batch)
mse.append(F.mse_loss(out, data.y, reduction='none').cpu())
return float(torch.cat(mse, dim=0).mean().sqrt())
for epoch in range(1, 201):
train_rmse = train()
val_rmse = test(val_loader)
test_rmse = test(test_loader)
print(f'Epoch: {epoch:03d}, Loss: {train_rmse:.4f} Val: {val_rmse:.4f} '
f'Test: {test_rmse:.4f}')
|