File: autoencoder.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (120 lines) | stat: -rw-r--r-- 3,995 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import os.path as osp
import time

import torch

import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GAE, VGAE, GCNConv

parser = argparse.ArgumentParser()
parser.add_argument('--variational', action='store_true')
parser.add_argument('--linear', action='store_true')
parser.add_argument('--dataset', type=str, default='Cora',
                    choices=['Cora', 'CiteSeer', 'PubMed'])
parser.add_argument('--epochs', type=int, default=400)
args = parser.parse_args()

if torch.cuda.is_available():
    device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
    device = torch.device('mps')
else:
    device = torch.device('cpu')

transform = T.Compose([
    T.NormalizeFeatures(),
    T.ToDevice(device),
    T.RandomLinkSplit(num_val=0.05, num_test=0.1, is_undirected=True,
                      split_labels=True, add_negative_train_samples=False),
])
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Planetoid')
dataset = Planetoid(path, args.dataset, transform=transform)
train_data, val_data, test_data = dataset[0]


class GCNEncoder(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1 = GCNConv(in_channels, 2 * out_channels)
        self.conv2 = GCNConv(2 * out_channels, out_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        return self.conv2(x, edge_index)


class VariationalGCNEncoder(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1 = GCNConv(in_channels, 2 * out_channels)
        self.conv_mu = GCNConv(2 * out_channels, out_channels)
        self.conv_logstd = GCNConv(2 * out_channels, out_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        return self.conv_mu(x, edge_index), self.conv_logstd(x, edge_index)


class LinearEncoder(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv = GCNConv(in_channels, out_channels)

    def forward(self, x, edge_index):
        return self.conv(x, edge_index)


class VariationalLinearEncoder(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv_mu = GCNConv(in_channels, out_channels)
        self.conv_logstd = GCNConv(in_channels, out_channels)

    def forward(self, x, edge_index):
        return self.conv_mu(x, edge_index), self.conv_logstd(x, edge_index)


in_channels, out_channels = dataset.num_features, 16

if not args.variational and not args.linear:
    model = GAE(GCNEncoder(in_channels, out_channels))
elif not args.variational and args.linear:
    model = GAE(LinearEncoder(in_channels, out_channels))
elif args.variational and not args.linear:
    model = VGAE(VariationalGCNEncoder(in_channels, out_channels))
elif args.variational and args.linear:
    model = VGAE(VariationalLinearEncoder(in_channels, out_channels))

model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)


def train():
    model.train()
    optimizer.zero_grad()
    z = model.encode(train_data.x, train_data.edge_index)
    loss = model.recon_loss(z, train_data.pos_edge_label_index)
    if args.variational:
        loss = loss + (1 / train_data.num_nodes) * model.kl_loss()
    loss.backward()
    optimizer.step()
    return float(loss)


@torch.no_grad()
def test(data):
    model.eval()
    z = model.encode(data.x, data.edge_index)
    return model.test(z, data.pos_edge_label_index, data.neg_edge_label_index)


times = []
for epoch in range(1, args.epochs + 1):
    start = time.time()
    loss = train()
    auc, ap = test(test_data)
    print(f'Epoch: {epoch:03d}, AUC: {auc:.4f}, AP: {ap:.4f}')
    times.append(time.time() - start)
print(f"Median time per epoch: {torch.tensor(times).median():.4f}s")