1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
import os.path as osp
import time
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
path = osp.dirname(osp.realpath(__file__))
path = osp.join(path, '..', '..', 'data', 'Planetoid')
dataset = Planetoid(
path, name='Cora', transform=T.Compose([
T.NormalizeFeatures(),
T.GCNNorm(),
]))
data = dataset[0].to(device)
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
# Pre-process normalization to avoid CPU communication/graph breaks:
self.conv1 = GCNConv(in_channels, hidden_channels, normalize=False)
self.conv2 = GCNConv(hidden_channels, out_channels, normalize=False)
def forward(self, x, edge_index, edge_weight):
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv1(x, edge_index, edge_weight).relu()
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return x
model = GCN(
in_channels=dataset.num_features,
hidden_channels=16,
out_channels=dataset.num_classes,
).to(device)
# Compile the model into an optimized version:
model = torch.compile(model, dynamic=False)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.01) # Only perform weight-decay on first convolution.
def train():
model.train()
optimizer.zero_grad()
out = model(data.x, data.edge_index, data.edge_weight)
loss = F.cross_entropy(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return float(loss)
@torch.no_grad()
def test():
model.eval()
pred = model(data.x, data.edge_index, data.edge_weight).argmax(dim=-1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
accs.append(int((pred[mask] == data.y[mask]).sum()) / int(mask.sum()))
return accs
times = []
for epoch in range(1, 201):
start = time.time()
loss = train()
train_acc, val_acc, test_acc = test()
times.append(time.time() - start)
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_acc:.4f}, '
f'Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'Median time per epoch: {torch.tensor(times).median():.4f}s')
|