File: rbcd_attack.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (219 lines) | stat: -rw-r--r-- 7,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import copy
import os.path as osp
from typing import Optional

import torch
import torch.nn.functional as F
from torch import Tensor
from torch.optim import Adam

import torch_geometric.transforms as T
from torch_geometric.contrib.nn import GRBCDAttack, PRBCDAttack
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GATConv, GCNConv
from torch_geometric.nn.conv.gcn_conv import gcn_norm
from torch_geometric.utils import softmax

path = osp.join(osp.dirname(osp.realpath(__file__)), 'data', 'Planetoid')


class GCN(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super().__init__()
        self.norm = gcn_norm
        self.conv1 = GCNConv(in_channels, hidden_channels, normalize=False)
        self.conv2 = GCNConv(hidden_channels, out_channels, normalize=False)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        self.conv2.reset_parameters()

    def forward(self, x, edge_index, edge_weight=None, **kwargs):
        # Normalize edge indices only once:
        if not kwargs.get('skip_norm', False):
            edge_index, edge_weight = self.norm(
                edge_index,
                edge_weight,
                num_nodes=x.size(0),
                add_self_loops=True,
            )

        x = self.conv1(x, edge_index, edge_weight).relu()
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index, edge_weight)
        return x


class WeightedGATConv(GATConv):
    """Extended GAT to allow for weighted edges."""
    def edge_update(self, alpha_j: Tensor, alpha_i: Optional[Tensor],
                    edge_attr: Optional[Tensor], index: Tensor,
                    ptr: Optional[Tensor], size_i: Optional[int]) -> Tensor:
        # Given edge-level attention coefficients for source and target nodes,
        # we simply need to sum them up to "emulate" concatenation:
        alpha = alpha_j if alpha_i is None else alpha_j + alpha_i
        alpha = F.leaky_relu(alpha, self.negative_slope)

        if edge_attr is not None:
            assert edge_attr.dim() == 1, 'Only scalar edge weights supported'
            edge_attr = edge_attr.view(-1, 1)
            # `alpha` unchanged if edge_attr == 1 and -Inf if edge_attr == 0;
            # We choose log to counteract underflow in subsequent exp/softmax
            alpha = alpha + torch.log2(edge_attr)

        alpha = softmax(alpha, index, ptr, size_i)
        alpha = F.dropout(alpha, p=self.dropout, training=self.training)
        return alpha


class GAT(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super().__init__()
        # Initialize edge weights of self-loops with 1:
        self.conv1 = WeightedGATConv(in_channels, hidden_channels,
                                     fill_value=1.)
        self.conv2 = WeightedGATConv(hidden_channels, out_channels,
                                     fill_value=1.)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        self.conv2.reset_parameters()

    def forward(self, x, edge_index, edge_weight=None):
        x = self.conv1(x, edge_index, edge_weight).relu()
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index, edge_weight)
        return x


def train(model, data, epochs=200, lr=0.01, weight_decay=5e-4):
    model.train()
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    for _ in range(epochs):
        optimizer.zero_grad()
        pred = model(data.x, data.edge_index, data.edge_weight)
        loss = F.cross_entropy(pred[data.train_mask], data.y[data.train_mask])
        loss.backward()
        optimizer.step()


def accuracy(pred, y, mask):
    return (pred.argmax(-1)[mask] == y[mask]).float().mean()


@torch.no_grad()
def test(model, data):
    model.eval()
    pred = model(data.x, data.edge_index, data.edge_weight)
    return float(accuracy(pred, data.y, data.test_mask))


# The metric in PRBCD is assumed to be best if lower (like a loss).
def metric(*args, **kwargs):
    return -accuracy(*args, **kwargs)


if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    dataset = Planetoid(path, name='Cora', transform=T.NormalizeFeatures())
    data = dataset[0].to(device)

    gcn = GCN(dataset.num_features, 16, dataset.num_classes).to(device)
    gat = GAT(dataset.num_features, 16, dataset.num_classes).to(device)

    train(gcn, data)
    gcn.eval()

    train(gat, data)
    gat.eval()

    node_idx = 42
    local_budget = 2  # Degree of (training) node 42 is 2.

    # Perturb 5% of edges:
    global_budget = int(0.05 * data.edge_index.size(1) / 2)

    print('------------- GAT: Local Evasion -------------')
    # Note: GRBCD is faster than PRBCD for small budgets but not as consistent

    grbcd = GRBCDAttack(gat, block_size=250_000)
    # The learning rate is one of the most important parameters for PRBCD and a
    # good heuristic is to choose it s.t. the budget is exhausted within a few
    # steps. Moreover, a high learning rate mitigates the impact of the
    # relaxation gap ({0, 1} -> [0, 1]) of the edge weights. See poisoning
    #  example for a debug plot.
    prbcd = PRBCDAttack(gat, block_size=250_000, metric=metric, lr=2_000)

    clean_acc = test(gat, data)
    print(f'Clean accuracy: {clean_acc:.3f}')

    # GRBCD: Attack a single node:
    pert_edge_index, perts = grbcd.attack(
        data.x,
        data.edge_index,
        data.y,
        budget=local_budget,
        idx_attack=[node_idx],
    )

    clean_margin = -PRBCDAttack._probability_margin_loss(
        gat(data.x, data.edge_index), data.y, [node_idx])
    pert_margin = -PRBCDAttack._probability_margin_loss(
        gat(data.x, pert_edge_index), data.y, [node_idx])
    print(f'GRBCD: Confidence margin of target to best non-target dropped '
          f'from {clean_margin:.3f} to {pert_margin:.3f}')
    adv_edges = ', '.join(str((u, v)) for u, v in perts.T.tolist())
    print(f'Adv. edges: {adv_edges}')

    # PRBCD: Attack single node:
    pert_edge_index, perts = prbcd.attack(
        data.x,
        data.edge_index,
        data.y,
        budget=local_budget,
        idx_attack=[node_idx],
    )
    clean_margin = -PRBCDAttack._probability_margin_loss(
        gat(data.x, data.edge_index), data.y, [node_idx])
    pert_margin = -PRBCDAttack._probability_margin_loss(
        gat(data.x, pert_edge_index), data.y, [node_idx])
    print(f'PRBCD: Confidence margin of target to best non-target dropped '
          f'from {clean_margin:.3f} to {pert_margin:.3f}')
    adv_edges = ', '.join(str((u, v)) for u, v in perts.T.tolist())
    print(f'Adv. edges: {adv_edges}\n')

    print('------------- GCN: Global Evasion -------------')

    grbcd = GRBCDAttack(gcn, block_size=250_000)
    prbcd = PRBCDAttack(gcn, block_size=250_000, metric=metric, lr=2_000)

    clean_acc = test(gcn, data)

    # GRBCD: Attack test set:
    pert_edge_index, perts = grbcd.attack(
        data.x,
        data.edge_index,
        data.y,
        budget=global_budget,
        idx_attack=data.test_mask,
    )

    pert_data = copy.copy(data)
    pert_data.edge_index = pert_edge_index
    pert_acc = test(gcn, pert_data)
    print(f'GRBCD: Accuracy dropped from {clean_acc:.3f} to {pert_acc:.3f}')

    # PRBCD: Attack test set:
    pert_edge_index, perts = prbcd.attack(
        data.x,
        data.edge_index,
        data.y,
        budget=global_budget,
        idx_attack=data.test_mask,
    )

    pert_data = copy.copy(data)
    pert_data.edge_index = pert_edge_index
    pert_acc = test(gcn, pert_data)
    print(f'PRBCD: Accuracy dropped from {clean_acc:.3f} to {pert_acc:.3f}')