File: save_model.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (51 lines) | stat: -rw-r--r-- 1,381 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import Optional

import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import BatchNorm1d, Linear, ReLU, Sequential

from torch_geometric.nn import GINConv, global_mean_pool


class GIN(torch.nn.Module):
    def __init__(self, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int):
        super().__init__()

        self.convs = torch.nn.ModuleList()
        for _ in range(num_layers):
            mlp = Sequential(
                Linear(in_channels, hidden_channels),
                BatchNorm1d(hidden_channels),
                ReLU(),
                Linear(hidden_channels, hidden_channels),
            )
            self.convs.append(GINConv(mlp))
            in_channels = hidden_channels

        self.lin1 = Linear(hidden_channels, hidden_channels)
        self.lin2 = Linear(hidden_channels, out_channels)

    def forward(
        self,
        x: Tensor,
        edge_index: Tensor,
        batch: Optional[Tensor] = None,
    ) -> Tensor:

        for conv in self.convs:
            x = conv(x, edge_index).relu()

        x = global_mean_pool(x, batch)

        x = self.lin1(x).relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)

        return x


model = GIN(32, 64, 16, num_layers=3)
model = torch.jit.script(model)
model.save('model.pt')