1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
import argparse
import os.path as osp
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import WikipediaNetwork
from torch_geometric.nn import DirGNNConv, GCNConv, SAGEConv
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='chameleon')
parser.add_argument('--hidden_channels', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--conv', type=str, default='gcn')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Wikipedia')
dataset = WikipediaNetwork(
root=path,
name=args.dataset,
transform=T.NormalizeFeatures(),
)
data = dataset[0].to(device)
data.train_mask = data.train_mask[:, 0]
data.val_mask = data.val_mask[:, 0]
data.test_mask = data.test_mask[:, 0]
if args.conv == 'gcn':
Conv = GCNConv
elif args.conv == 'sage':
Conv = SAGEConv
else:
raise NotImplementedError
class DirGNN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, alpha):
super().__init__()
self.conv1 = Conv(in_channels, hidden_channels)
self.conv1 = DirGNNConv(self.conv1, alpha, root_weight=False)
self.conv2 = Conv(hidden_channels, out_channels)
self.conv2 = DirGNNConv(self.conv2, alpha, root_weight=False)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
return x
model = DirGNN(
dataset.num_features,
args.hidden_channels,
dataset.num_classes,
alpha=args.alpha,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
def train():
model.train()
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = F.cross_entropy(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return float(loss)
@torch.no_grad()
def test():
model.eval()
pred = model(data.x, data.edge_index).argmax(dim=-1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
accs.append(int((pred[mask] == data.y[mask]).sum()) / int(mask.sum()))
return accs
best_val_acc = final_test_acc = 0
for epoch in range(1, args.epochs + 1):
loss = train()
train_acc, val_acc, tmp_test_acc = test()
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
print(f'Epoch: {epoch:04d}, Loss: {loss:.4f}, Train: {train_acc:.4f}, '
f'Val: {val_acc:.4f}, Test: {test_acc:.4f}')
|