File: partition_ogbn_dataset.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (145 lines) | stat: -rw-r--r-- 4,779 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import ast
import os.path as osp

import graphlearn_torch as glt
import torch
from ogb.nodeproppred import PygNodePropPredDataset


def partition_dataset(
    ogbn_dataset: str,
    root_dir: str,
    num_partitions: int,
    num_nbrs: glt.NumNeighbors,
    chunk_size: int,
    cache_ratio: float,
):
    ###########################################################################
    # In distributed training (under the worker mode), each node in the cluster
    # holds a partition of the graph. Thus before the training starts, we
    # partition the dataset into multiple partitions, each of which corresponds
    # to a specific training worker.
    # The partitioning occurs in three steps:
    #   1. Run a partition algorithm to assign nodes to partitions.
    #   2. Construct partition graph structure based on the node assignment.
    #   3. Split the node features and edge features based on the partition
    # result.
    ###########################################################################

    print(f'-- Loading {ogbn_dataset} ...')
    dataset = PygNodePropPredDataset(ogbn_dataset, root_dir)
    data = dataset[0]
    print(f'* node count: {data.num_nodes}')
    print(f'* edge count: {data.num_edges}')
    split_idx = dataset.get_idx_split()

    print('-- Saving label ...')
    label_dir = osp.join(root_dir, f'{ogbn_dataset}-label')
    glt.utils.ensure_dir(label_dir)
    torch.save(data.y.squeeze(), osp.join(label_dir, 'label.pt'))

    print('-- Partitioning training idx ...')
    train_idx = split_idx['train']
    train_idx = train_idx.split(train_idx.size(0) // num_partitions)
    train_idx_partitions_dir = osp.join(
        root_dir,
        f'{ogbn_dataset}-train-partitions',
    )
    glt.utils.ensure_dir(train_idx_partitions_dir)
    for pidx in range(num_partitions):
        torch.save(
            train_idx[pidx],
            osp.join(train_idx_partitions_dir, f'partition{pidx}.pt'),
        )

    print('-- Partitioning test idx ...')
    test_idx = split_idx['test']
    test_idx = test_idx.split(test_idx.size(0) // num_partitions)
    test_idx_partitions_dir = osp.join(
        root_dir,
        f'{ogbn_dataset}-test-partitions',
    )
    glt.utils.ensure_dir(test_idx_partitions_dir)
    for pidx in range(num_partitions):
        torch.save(
            test_idx[pidx],
            osp.join(test_idx_partitions_dir, f'partition{pidx}.pt'),
        )

    print('-- Initializing graph ...')
    csr_topo = glt.data.Topology(edge_index=data.edge_index,
                                 input_layout='COO')
    graph = glt.data.Graph(csr_topo, mode='ZERO_COPY')

    print('-- Sampling hotness ...')
    glt_sampler = glt.sampler.NeighborSampler(graph, num_nbrs)
    node_probs = []
    for pidx in range(num_partitions):
        seeds = train_idx[pidx]
        prob = glt_sampler.sample_prob(seeds, data.num_nodes)
        node_probs.append(prob.cpu())

    print('-- Partitioning graph and features ...')
    partitions_dir = osp.join(root_dir, f'{ogbn_dataset}-partitions')
    freq_partitioner = glt.partition.FrequencyPartitioner(
        output_dir=partitions_dir,
        num_parts=num_partitions,
        num_nodes=data.num_nodes,
        edge_index=data.edge_index,
        probs=node_probs,
        node_feat=data.x,
        chunk_size=chunk_size,
        cache_ratio=cache_ratio,
    )
    freq_partitioner.partition()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--dataset',
        type=str,
        default='ogbn-products',
        help='The name of the dataset',
    )
    parser.add_argument(
        '--num_partitions',
        type=int,
        default=2,
        help='The Number of partitions',
    )
    parser.add_argument(
        '--root_dir',
        type=str,
        default='../../../data/ogbn-products',
        help='The root directory (relative path) of the partitioned dataset',
    )
    parser.add_argument(
        '--num_nbrs',
        type=ast.literal_eval,
        default='[15,10,5]',
        help='The number of neighbors to sample hotness for feature caching',
    )
    parser.add_argument(
        '--chunk_size',
        type=int,
        default=10000,
        help='The chunk size for feature partitioning',
    )
    parser.add_argument(
        '--cache_ratio',
        type=float,
        default=0.2,
        help='The proportion to cache features per partition',
    )
    args = parser.parse_args()

    partition_dataset(
        ogbn_dataset=args.dataset,
        root_dir=osp.join(osp.dirname(osp.realpath(__file__)), args.root_dir),
        num_partitions=args.num_partitions,
        num_nbrs=args.num_nbrs,
        chunk_size=args.chunk_size,
        cache_ratio=args.cache_ratio,
    )