1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
import multiprocessing as mp
import os.path as osp
import kuzu
import pandas as pd
import torch
import torch.nn.functional as F
from tqdm import tqdm
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import MLP, BatchNorm, SAGEConv
NUM_EPOCHS = 1
LOADER_BATCH_SIZE = 1024
print('Batch size:', LOADER_BATCH_SIZE)
print('Number of epochs:', NUM_EPOCHS)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
# Load the train set:
train_path = osp.join('.', 'papers100M-bin', 'split', 'time', 'train.csv.gz')
train_df = pd.read_csv(
osp.abspath(train_path),
compression='gzip',
header=None,
)
input_nodes = torch.tensor(train_df[0].values, dtype=torch.long)
########################################################################
# The below code sets up the remote backend of Kùzu for PyG.
# Please refer to: https://kuzudb.com/docs/client-apis/python-api/overview.html
# for how to use the Python API of Kùzu.
########################################################################
# The buffer pool size of Kùzu is set to 40GB. You can change it to a smaller
# value if you have less memory.
KUZU_BM_SIZE = 40 * 1024**3
# Create Kùzu database:
db = kuzu.Database(osp.abspath(osp.join('.', 'papers100M')), KUZU_BM_SIZE)
# Get remote backend for PyG:
feature_store, graph_store = db.get_torch_geometric_remote_backend(
mp.cpu_count())
# Plug the graph store and feature store into the `NeighborLoader`.
# Note that `filter_per_worker` is set to `False`. This is because the Kùzu
# database is already using multi-threading to scan the features in parallel
# and the database object is not fork-safe.
loader = NeighborLoader(
data=(feature_store, graph_store),
num_neighbors={('paper', 'cites', 'paper'): [12, 12, 12]},
batch_size=LOADER_BATCH_SIZE,
input_nodes=('paper', input_nodes),
num_workers=4,
filter_per_worker=False,
)
class GraphSAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout=0.2):
super().__init__()
self.convs = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.norms.append(BatchNorm(hidden_channels))
for i in range(1, num_layers):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.norms.append(BatchNorm(hidden_channels))
self.mlp = MLP(
in_channels=in_channels + num_layers * hidden_channels,
hidden_channels=2 * out_channels,
out_channels=out_channels,
num_layers=2,
norm='batch_norm',
act='leaky_relu',
)
self.dropout = dropout
def forward(self, x, edge_index):
x = F.dropout(x, p=self.dropout, training=self.training)
xs = [x]
for conv, norm in zip(self.convs, self.norms):
x = conv(x, edge_index)
x = norm(x)
x = x.relu()
x = F.dropout(x, p=self.dropout, training=self.training)
xs.append(x)
return self.mlp(torch.cat(xs, dim=-1))
model = GraphSAGE(in_channels=128, hidden_channels=1024, out_channels=172,
num_layers=3).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
for epoch in range(1, NUM_EPOCHS + 1):
total_loss = total_examples = 0
for batch in tqdm(loader):
batch = batch.to(device)
batch_size = batch['paper'].batch_size
optimizer.zero_grad()
out = model(
batch['paper'].x,
batch['paper', 'cites', 'paper'].edge_index,
)[:batch_size]
y = batch['paper'].y[:batch_size].long().view(-1)
loss = F.cross_entropy(out, y)
loss.backward()
optimizer.step()
total_loss += float(loss) * y.numel()
total_examples += y.numel()
print(f'Epoch: {epoch:02d}, Loss: {total_loss / total_examples:.4f}')
|