1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
import argparse
import logging
import multiprocessing
import os
import queue
import re
import signal
import subprocess
import sys
import time
from functools import partial
from threading import Thread
from typing import Optional
def clean_runs(get_all_remote_pids, conn):
"""This process cleans up the remaining remote training tasks."""
print("Cleanup runs")
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = conn.recv()
# If the launch process exits normally, don't do anything:
if data == "exit":
sys.exit(0)
else:
remote_pids = get_all_remote_pids()
for (ip, port), pids in remote_pids.items():
kill_proc(ip, port, pids)
print("Cleanup exits")
def kill_proc(ip, port, pids):
"""SSH to remote nodes and kill the specified processes."""
curr_pid = os.getpid()
killed_pids = []
pids.sort()
for pid in pids:
assert curr_pid != pid
print(f"Kill process {pid} on {ip}:{port}", flush=True)
kill_cmd = ("ssh -o StrictHostKeyChecking=no -p " + str(port) + " " +
ip + f" 'kill {pid}'")
subprocess.run(kill_cmd, shell=True)
killed_pids.append(pid)
for i in range(3):
killed_pids = get_pids_to_kill(ip, port, killed_pids)
if len(killed_pids) == 0:
break
else:
killed_pids.sort()
for pid in killed_pids:
print(f"Kill process {pid} on {ip}:{port}", flush=True)
kill_cmd = ("ssh -o StrictHostKeyChecking=no -p " + str(port) +
" " + ip + f" 'kill -9 {pid}'")
subprocess.run(kill_cmd, shell=True)
def get_pids_to_kill(ip, port, killed_pids):
"""Get the process IDs that we want to kill but are still alive."""
killed_pids = [str(pid) for pid in killed_pids]
killed_pids = ",".join(killed_pids)
ps_cmd = ("ssh -o StrictHostKeyChecking=no -p " + str(port) + " " + ip +
f" 'ps -p {killed_pids} -h'")
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
pids = []
for p in res.stdout.decode("utf-8").split("\n"):
ps = p.split()
if len(ps) > 0:
pids.append(int(ps[0]))
return pids
def remote_execute(
cmd: str,
state_q: queue.Queue,
ip: str,
port: int,
username: Optional[str] = None,
) -> Thread:
"""Execute command line on remote machine via ssh.
Args:
cmd: User-defined command (udf) to execute on the remote host.
state_q: A queue collecting Thread exit states.
ip: The ip-address of the host to run the command on.
port: Port number that the host is listening on.
username: If given, this will specify a username to use when issuing
commands over SSH. Useful when your infra requires you to
explicitly specify a username to avoid permission issues.
Returns:
thread: The thread who runs the command on the remote host.
Returns when the command completes on the remote host.
"""
ip_prefix = ""
if username is not None:
ip_prefix += f"{username}@"
# Construct ssh command that executes `cmd` on the remote host
ssh_cmd = (f"ssh -o StrictHostKeyChecking=no -p {port} {ip_prefix}{ip} "
f"'{cmd}'")
print(f"----- ssh_cmd={ssh_cmd} ")
# thread func to run the job
def run(ssh_cmd, state_q):
try:
subprocess.check_call(ssh_cmd, shell=True)
state_q.put(0)
except subprocess.CalledProcessError as err:
print(f"Called process error {err}")
state_q.put(err.returncode)
except Exception:
state_q.put(-1)
thread = Thread(
target=run,
args=(
ssh_cmd,
state_q,
),
)
thread.setDaemon(True)
thread.start()
# Sleep for a while in case SSH is rejected by peer due to busy connection:
time.sleep(0.2)
return thread
def get_remote_pids(ip, port, cmd_regex):
"""Get the process IDs that run the command in the remote machine."""
pids = []
curr_pid = os.getpid()
# We want to get the Python processes. However, we may get some SSH
# processes, so we should filter them out:
ps_cmd = (f"ssh -o StrictHostKeyChecking=no -p {port} {ip} "
f"'ps -aux | grep python | grep -v StrictHostKeyChecking'")
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
for p in res.stdout.decode("utf-8").split("\n"):
ps = p.split()
if len(ps) < 2:
continue
# We only get the processes that run the specified command:
res = re.search(cmd_regex, p)
if res is not None and int(ps[1]) != curr_pid:
pids.append(ps[1])
pid_str = ",".join([str(pid) for pid in pids])
ps_cmd = (f"ssh -o StrictHostKeyChecking=no -p {port} {ip} "
f" 'pgrep -P {pid_str}'")
res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
pids1 = res.stdout.decode("utf-8").split("\n")
all_pids = []
for pid in set(pids + pids1):
if pid == "" or int(pid) == curr_pid:
continue
all_pids.append(int(pid))
all_pids.sort()
return all_pids
def get_all_remote_pids(hosts, ssh_port, udf_command):
"""Get all remote processes."""
remote_pids = {}
for node_id, host in enumerate(hosts):
ip, _ = host
# When creating training processes in remote machines, we may insert
# some arguments in the commands. We need to use regular expressions to
# match the modified command.
cmds = udf_command.split()
new_udf_command = " .*".join(cmds)
pids = get_remote_pids(ip, ssh_port, new_udf_command)
remote_pids[(ip, ssh_port)] = pids
return remote_pids
def wrap_cmd_w_envvars(cmd: str, env_vars: str) -> str:
"""Wraps a CLI command with desired environment variables.
Example:
>>> cmd = "ls && pwd"
>>> env_vars = "VAR1=value1 VAR2=value2"
>>> wrap_cmd_w_envvars(cmd, env_vars)
"(export VAR1=value1 VAR2=value2; ls && pwd)"
"""
if env_vars == "":
return f"({cmd})"
else:
return f"(export {env_vars}; {cmd})"
def wrap_cmd_w_extra_envvars(cmd: str, env_vars: list) -> str:
"""Wraps a CLI command with extra environment variables.
Example:
>>> cmd = "ls && pwd"
>>> env_vars = ["VAR1=value1", "VAR2=value2"]
>>> wrap_cmd_w_extra_envvars(cmd, env_vars)
"(export VAR1=value1 VAR2=value2; ls && pwd)"
"""
env_vars = " ".join(env_vars)
return wrap_cmd_w_envvars(cmd, env_vars)
def get_available_port(ip):
"""Get available port with specified ip."""
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
for port in range(1234, 65535):
try:
sock.connect((ip, port))
except Exception:
return port
raise RuntimeError(f"Failed to get available port for ip~{ip}")
def submit_all_jobs(args, udf_command, dry_run=False):
if dry_run:
print("Dry run mode, no jobs will be launched")
servers_cmd = []
hosts = []
thread_list = []
# Get the IP addresses of the cluster:
ip_config = os.path.join(args.workspace, args.ip_config)
with open(ip_config) as f:
for line in f:
result = line.strip().split()
if len(result) == 2:
ip = result[0]
port = int(result[1])
hosts.append((ip, port))
elif len(result) == 1:
ip = result[0]
port = get_available_port(ip)
hosts.append((ip, port))
else:
raise RuntimeError("Format error of 'ip_config'")
state_q = queue.Queue()
master_ip, _ = hosts[0]
for i in range(len(hosts)):
ip, _ = hosts[i]
server_env_vars_cur = ""
cmd = wrap_cmd_w_envvars(udf_command, server_env_vars_cur)
cmd = (wrap_cmd_w_extra_envvars(cmd, args.extra_envs)
if len(args.extra_envs) > 0 else cmd)
cmd = cmd[:-1]
cmd += " --logging"
cmd += f" --dataset_root_dir={args.dataset_root_dir}"
cmd += f" --dataset={args.dataset}"
cmd += f" --num_nodes={args.num_nodes}"
cmd += f" --num_neighbors={args.num_neighbors}"
cmd += f" --node_rank={i}"
cmd += f" --master_addr={master_ip}"
cmd += f" --num_epochs={args.num_epochs}"
cmd += f" --batch_size={args.batch_size}"
cmd += f" --num_workers={args.num_workers}"
cmd += f" --concurrency={args.concurrency}"
cmd += f" --ddp_port={args.ddp_port})"
servers_cmd.append(cmd)
if not dry_run:
thread_list.append(
remote_execute(cmd, state_q, ip, args.ssh_port,
username=args.ssh_username))
# Start a cleanup process dedicated for cleaning up remote training jobs:
conn1, conn2 = multiprocessing.Pipe()
func = partial(get_all_remote_pids, hosts, args.ssh_port, udf_command)
process = multiprocessing.Process(target=clean_runs, args=(func, conn1))
process.start()
def signal_handler(signal, frame):
logging.info("Stop launcher")
# We need to tell the cleanup process to kill remote training jobs:
conn2.send("cleanup")
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
err = 0
for thread in thread_list:
thread.join()
err_code = state_q.get()
if err_code != 0:
err = err_code # Record error code:
# The training processes completed.
# We tell the cleanup process to exit.
conn2.send("exit")
process.join()
if err != 0:
print("Task failed")
sys.exit(-1)
print("=== fully done ! === ")
def main():
parser = argparse.ArgumentParser(description="Launch a distributed job")
parser.add_argument(
"--ssh_port",
type=int,
default=22,
help="SSH port",
)
parser.add_argument(
"--ssh_username",
type=str,
default="",
help=("When issuing commands (via ssh) to the cluster, use the "
"provided username in the ssh cmd. For example, if you provide "
"--ssh_username=bob, then the ssh command will be like "
"'ssh bob@1.2.3.4 CMD'"),
)
parser.add_argument(
"--workspace",
type=str,
required=True,
help="Path of user directory of distributed tasks",
)
parser.add_argument(
"--dataset",
type=str,
default="ogbn-products",
help="The name of the dataset",
)
parser.add_argument(
"--dataset_root_dir",
type=str,
default='../../data/products',
help="The root directory (relative path) of partitioned dataset",
)
parser.add_argument(
"--num_nodes",
type=int,
default=2,
help="Number of distributed nodes",
)
parser.add_argument(
"--num_neighbors",
type=str,
default="15,10,5",
help="Number of node neighbors sampled at each layer",
)
parser.add_argument(
"--node_rank",
type=int,
default=0,
help="The current node rank",
)
parser.add_argument(
"--num_training_procs",
type=int,
default=2,
help="The number of training processes per node",
)
parser.add_argument(
"--master_addr",
type=str,
default='localhost',
help="The master address for RPC initialization",
)
parser.add_argument(
"--num_epochs",
type=int,
default=100,
help="The number of training epochs",
)
parser.add_argument(
"--batch_size",
type=int,
default=1024,
help="Batch size for training and testing",
)
parser.add_argument(
"--num_workers",
type=int,
default=2,
help="Number of sampler sub-processes",
)
parser.add_argument(
"--concurrency",
type=int,
default=2,
help="Number of maximum concurrent RPC for each sampler",
)
parser.add_argument(
"--learning_rate",
type=float,
default=0.0004,
help="Learning rate",
)
parser.add_argument(
'--ddp_port',
type=int,
default=11111,
help="Port used for PyTorch's DDP communication",
)
parser.add_argument(
"--ip_config",
required=True,
type=str,
help="File (in workspace) of IP configuration for server processes",
)
parser.add_argument(
"--extra_envs",
nargs="+",
type=str,
default=[],
help=("Extra environment parameters be set. For example, you can set "
"the 'LD_LIBRARY_PATH' by adding: --extra_envs "
"LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH"),
)
args, udf_command = parser.parse_known_args()
udf_command = str(udf_command[0])
if "python" not in udf_command:
raise RuntimeError("Launching script does only support a Python "
"executable file")
submit_all_jobs(args, udf_command)
if __name__ == "__main__":
fmt = "%(asctime)s %(levelname)s %(message)s"
logging.basicConfig(format=fmt, level=logging.INFO)
main()
|