1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
import argparse
import os
import os.path as osp
import torch
from ogb.nodeproppred import PygNodePropPredDataset
import torch_geometric.transforms as T
from torch_geometric.datasets import OGB_MAG, MovieLens, Reddit
from torch_geometric.distributed import Partitioner
from torch_geometric.utils import mask_to_index
def partition_dataset(
dataset_name: str,
root_dir: str,
num_parts: int,
recursive: bool = False,
use_sparse_tensor: bool = False,
):
if not osp.isabs(root_dir):
path = osp.dirname(osp.realpath(__file__))
root_dir = osp.join(path, root_dir)
dataset_dir = osp.join(root_dir, 'dataset', dataset_name)
dataset = get_dataset(dataset_name, dataset_dir, use_sparse_tensor)
data = dataset[0]
save_dir = osp.join(root_dir, 'partitions', dataset_name,
f'{num_parts}-parts')
partitions_dir = osp.join(save_dir, f'{dataset_name}-partitions')
partitioner = Partitioner(data, num_parts, partitions_dir, recursive)
partitioner.generate_partition()
print('-- Saving label ...')
label_dir = osp.join(save_dir, f'{dataset_name}-label')
os.makedirs(label_dir, exist_ok=True)
if dataset_name == 'ogbn-mag':
split_data = data['paper']
label = split_data.y
else:
split_data = data
if dataset_name == 'ogbn-products':
label = split_data.y.squeeze()
elif dataset_name == 'Reddit':
label = split_data.y
elif dataset_name == 'MovieLens':
label = split_data[data.edge_types[0]].edge_label
torch.save(label, osp.join(label_dir, 'label.pt'))
split_idx = get_idx_split(dataset, dataset_name, split_data)
if dataset_name == 'MovieLens':
save_link_partitions(split_idx, data, dataset_name, num_parts,
save_dir)
else:
save_partitions(split_idx, dataset_name, num_parts, save_dir)
def get_dataset(name, dataset_dir, use_sparse_tensor=False):
transforms = []
if use_sparse_tensor:
transforms = [T.ToSparseTensor(remove_edge_index=False)]
if name == 'ogbn-mag':
transforms = [T.ToUndirected(merge=True)] + transforms
return OGB_MAG(
root=dataset_dir,
preprocess='metapath2vec',
transform=T.Compose(transforms),
)
elif name == 'ogbn-products':
transforms = [T.RemoveDuplicatedEdges()] + transforms
return PygNodePropPredDataset(
'ogbn-products',
root=dataset_dir,
transform=T.Compose(transforms),
)
elif name == 'MovieLens':
transforms = [T.ToUndirected(merge=True)] + transforms
return MovieLens(
root=dataset_dir,
model_name='all-MiniLM-L6-v2',
transform=T.Compose(transforms),
)
elif name == 'Reddit':
return Reddit(
root=dataset_dir,
transform=T.Compose(transforms),
)
def get_idx_split(dataset, dataset_name, split_data):
if dataset_name == 'ogbn-mag' or dataset_name == 'Reddit':
train_idx = mask_to_index(split_data.train_mask)
test_idx = mask_to_index(split_data.test_mask)
val_idx = mask_to_index(split_data.val_mask)
elif dataset_name == 'ogbn-products':
split_idx = dataset.get_idx_split()
train_idx = split_idx['train']
test_idx = split_idx['test']
val_idx = split_idx['valid']
elif dataset_name == 'MovieLens':
# Perform a 80/10/10 temporal link-level split:
perm = torch.argsort(dataset[0][('user', 'rates', 'movie')].time)
train_idx = perm[:int(0.8 * perm.size(0))]
val_idx = perm[int(0.8 * perm.size(0)):int(0.9 * perm.size(0))]
test_idx = perm[int(0.9 * perm.size(0)):]
return {'train': train_idx, 'val': val_idx, 'test': test_idx}
def save_partitions(split_idx, dataset_name, num_parts, save_dir):
for key, idx in split_idx.items():
print(f'-- Partitioning {key} indices ...')
idx = idx.split(idx.size(0) // num_parts)
part_dir = osp.join(save_dir, f'{dataset_name}-{key}-partitions')
os.makedirs(part_dir, exist_ok=True)
for i in range(num_parts):
torch.save(idx[i], osp.join(part_dir, f'partition{i}.pt'))
def save_link_partitions(split_idx, data, dataset_name, num_parts, save_dir):
edge_type = data.edge_types[0]
for key, idx in split_idx.items():
print(f'-- Partitioning {key} indices ...')
edge_index = data[edge_type].edge_index[:, idx]
edge_index = edge_index.split(edge_index.size(1) // num_parts, dim=1)
label = data[edge_type].edge_label[idx]
label = label.split(label.size(0) // num_parts)
edge_time = data[edge_type].time[idx]
edge_time = edge_time.split(edge_time.size(0) // num_parts)
part_dir = osp.join(save_dir, f'{dataset_name}-{key}-partitions')
os.makedirs(part_dir, exist_ok=True)
for i in range(num_parts):
partition = {
'edge_label_index': edge_index[i],
'edge_label': label[i],
'edge_label_time': edge_time[i] - 1,
}
torch.save(partition, osp.join(part_dir, f'partition{i}.pt'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
add = parser.add_argument
add('--dataset', type=str,
choices=['ogbn-mag', 'ogbn-products', 'MovieLens',
'Reddit'], default='ogbn-products')
add('--root_dir', default='../../../data', type=str)
add('--num_partitions', type=int, default=2)
add('--recursive', action='store_true')
# TODO (kgajdamo) Add support for arguments below:
# add('--use-sparse-tensor', action='store_true')
# add('--bf16', action='store_true')
args = parser.parse_args()
partition_dataset(args.dataset, args.root_dir, args.num_partitions,
args.recursive)
|