File: partition_graph.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (173 lines) | stat: -rw-r--r-- 5,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import os
import os.path as osp

import torch
from ogb.nodeproppred import PygNodePropPredDataset

import torch_geometric.transforms as T
from torch_geometric.datasets import OGB_MAG, MovieLens, Reddit
from torch_geometric.distributed import Partitioner
from torch_geometric.utils import mask_to_index


def partition_dataset(
    dataset_name: str,
    root_dir: str,
    num_parts: int,
    recursive: bool = False,
    use_sparse_tensor: bool = False,
):
    if not osp.isabs(root_dir):
        path = osp.dirname(osp.realpath(__file__))
        root_dir = osp.join(path, root_dir)

    dataset_dir = osp.join(root_dir, 'dataset', dataset_name)
    dataset = get_dataset(dataset_name, dataset_dir, use_sparse_tensor)
    data = dataset[0]

    save_dir = osp.join(root_dir, 'partitions', dataset_name,
                        f'{num_parts}-parts')

    partitions_dir = osp.join(save_dir, f'{dataset_name}-partitions')
    partitioner = Partitioner(data, num_parts, partitions_dir, recursive)
    partitioner.generate_partition()

    print('-- Saving label ...')
    label_dir = osp.join(save_dir, f'{dataset_name}-label')
    os.makedirs(label_dir, exist_ok=True)

    if dataset_name == 'ogbn-mag':
        split_data = data['paper']
        label = split_data.y
    else:
        split_data = data
        if dataset_name == 'ogbn-products':
            label = split_data.y.squeeze()
        elif dataset_name == 'Reddit':
            label = split_data.y
        elif dataset_name == 'MovieLens':
            label = split_data[data.edge_types[0]].edge_label

    torch.save(label, osp.join(label_dir, 'label.pt'))

    split_idx = get_idx_split(dataset, dataset_name, split_data)

    if dataset_name == 'MovieLens':
        save_link_partitions(split_idx, data, dataset_name, num_parts,
                             save_dir)
    else:
        save_partitions(split_idx, dataset_name, num_parts, save_dir)


def get_dataset(name, dataset_dir, use_sparse_tensor=False):
    transforms = []
    if use_sparse_tensor:
        transforms = [T.ToSparseTensor(remove_edge_index=False)]

    if name == 'ogbn-mag':
        transforms = [T.ToUndirected(merge=True)] + transforms
        return OGB_MAG(
            root=dataset_dir,
            preprocess='metapath2vec',
            transform=T.Compose(transforms),
        )

    elif name == 'ogbn-products':
        transforms = [T.RemoveDuplicatedEdges()] + transforms
        return PygNodePropPredDataset(
            'ogbn-products',
            root=dataset_dir,
            transform=T.Compose(transforms),
        )

    elif name == 'MovieLens':
        transforms = [T.ToUndirected(merge=True)] + transforms
        return MovieLens(
            root=dataset_dir,
            model_name='all-MiniLM-L6-v2',
            transform=T.Compose(transforms),
        )

    elif name == 'Reddit':
        return Reddit(
            root=dataset_dir,
            transform=T.Compose(transforms),
        )


def get_idx_split(dataset, dataset_name, split_data):
    if dataset_name == 'ogbn-mag' or dataset_name == 'Reddit':
        train_idx = mask_to_index(split_data.train_mask)
        test_idx = mask_to_index(split_data.test_mask)
        val_idx = mask_to_index(split_data.val_mask)

    elif dataset_name == 'ogbn-products':
        split_idx = dataset.get_idx_split()
        train_idx = split_idx['train']
        test_idx = split_idx['test']
        val_idx = split_idx['valid']

    elif dataset_name == 'MovieLens':
        # Perform a 80/10/10 temporal link-level split:
        perm = torch.argsort(dataset[0][('user', 'rates', 'movie')].time)
        train_idx = perm[:int(0.8 * perm.size(0))]
        val_idx = perm[int(0.8 * perm.size(0)):int(0.9 * perm.size(0))]
        test_idx = perm[int(0.9 * perm.size(0)):]

    return {'train': train_idx, 'val': val_idx, 'test': test_idx}


def save_partitions(split_idx, dataset_name, num_parts, save_dir):
    for key, idx in split_idx.items():
        print(f'-- Partitioning {key} indices ...')
        idx = idx.split(idx.size(0) // num_parts)

        part_dir = osp.join(save_dir, f'{dataset_name}-{key}-partitions')
        os.makedirs(part_dir, exist_ok=True)
        for i in range(num_parts):
            torch.save(idx[i], osp.join(part_dir, f'partition{i}.pt'))


def save_link_partitions(split_idx, data, dataset_name, num_parts, save_dir):
    edge_type = data.edge_types[0]

    for key, idx in split_idx.items():
        print(f'-- Partitioning {key} indices ...')
        edge_index = data[edge_type].edge_index[:, idx]
        edge_index = edge_index.split(edge_index.size(1) // num_parts, dim=1)

        label = data[edge_type].edge_label[idx]
        label = label.split(label.size(0) // num_parts)

        edge_time = data[edge_type].time[idx]
        edge_time = edge_time.split(edge_time.size(0) // num_parts)

        part_dir = osp.join(save_dir, f'{dataset_name}-{key}-partitions')
        os.makedirs(part_dir, exist_ok=True)
        for i in range(num_parts):
            partition = {
                'edge_label_index': edge_index[i],
                'edge_label': label[i],
                'edge_label_time': edge_time[i] - 1,
            }
            torch.save(partition, osp.join(part_dir, f'partition{i}.pt'))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    add = parser.add_argument

    add('--dataset', type=str,
        choices=['ogbn-mag', 'ogbn-products', 'MovieLens',
                 'Reddit'], default='ogbn-products')
    add('--root_dir', default='../../../data', type=str)
    add('--num_partitions', type=int, default=2)
    add('--recursive', action='store_true')
    # TODO (kgajdamo) Add support for arguments below:
    # add('--use-sparse-tensor', action='store_true')
    # add('--bf16', action='store_true')
    args = parser.parse_args()

    partition_dataset(args.dataset, args.root_dir, args.num_partitions,
                      args.recursive)