1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
import argparse
import os.path as osp
import torch
import torch.nn.functional as F
from ogb.graphproppred import Evaluator
from ogb.graphproppred import PygGraphPropPredDataset as OGBG
from ogb.graphproppred.mol_encoder import AtomEncoder
from torch.nn import BatchNorm1d, Linear, ReLU, Sequential
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch_geometric.transforms as T
from torch_geometric.loader import DataLoader
from torch_geometric.nn import EGConv, global_mean_pool
from torch_geometric.typing import WITH_TORCH_SPARSE
if not WITH_TORCH_SPARSE:
quit("This example requires 'torch-sparse'")
parser = argparse.ArgumentParser()
parser.add_argument('--use_multi_aggregators', action='store_true',
help='Switch between EGC-S and EGC-M')
args = parser.parse_args()
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'OGB')
dataset = OGBG('ogbg-molhiv', path, pre_transform=T.ToSparseTensor())
evaluator = Evaluator('ogbg-molhiv')
split_idx = dataset.get_idx_split()
train_dataset = dataset[split_idx['train']]
val_dataset = dataset[split_idx['valid']]
test_dataset = dataset[split_idx['test']]
train_loader = DataLoader(train_dataset, batch_size=32, num_workers=4,
shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=256)
test_loader = DataLoader(test_dataset, batch_size=256)
class Net(torch.nn.Module):
def __init__(self, hidden_channels, num_layers, num_heads, num_bases):
super().__init__()
if args.use_multi_aggregators:
aggregators = ['sum', 'mean', 'max']
else:
aggregators = ['symnorm']
self.encoder = AtomEncoder(hidden_channels)
self.convs = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
for _ in range(num_layers):
self.convs.append(
EGConv(hidden_channels, hidden_channels, aggregators,
num_heads, num_bases))
self.norms.append(BatchNorm1d(hidden_channels))
self.mlp = Sequential(
Linear(hidden_channels, hidden_channels // 2, bias=False),
BatchNorm1d(hidden_channels // 2),
ReLU(inplace=True),
Linear(hidden_channels // 2, hidden_channels // 4, bias=False),
BatchNorm1d(hidden_channels // 4),
ReLU(inplace=True),
Linear(hidden_channels // 4, 1),
)
def forward(self, x, adj_t, batch):
adj_t = adj_t.set_value(None) # EGConv works without any edge features
x = self.encoder(x)
for conv, norm in zip(self.convs, self.norms):
h = conv(x, adj_t)
h = norm(h)
h = h.relu_()
x = x + h
x = global_mean_pool(x, batch)
return self.mlp(x)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(hidden_channels=236, num_layers=4, num_heads=4,
num_bases=4).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=20,
min_lr=1e-5)
def train():
model.train()
total_loss = total_examples = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.adj_t, data.batch)
loss = F.binary_cross_entropy_with_logits(out, data.y.to(torch.float))
loss.backward()
optimizer.step()
total_loss += float(loss) * data.num_graphs
total_examples += data.num_graphs
return total_loss / total_examples
@torch.no_grad()
def evaluate(loader):
model.eval()
y_pred, y_true = [], []
for data in loader:
data = data.to(device)
pred = model(data.x, data.adj_t, data.batch)
y_pred.append(pred.cpu())
y_true.append(data.y.cpu())
y_true = torch.cat(y_true, dim=0)
y_pred = torch.cat(y_pred, dim=0)
return evaluator.eval({'y_true': y_true, 'y_pred': y_pred})['rocauc']
for epoch in range(1, 31):
loss = train()
val_rocauc = evaluate(val_loader)
test_rocauc = evaluate(test_loader)
scheduler.step(val_rocauc)
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_rocauc:.4f}, '
f'Test: {test_rocauc:.4f}')
|