# Examples for Generating Explanations of Graph Neural Networks
This directory contains examples demonstrating the use of the `torch_geometric.explain` package.
The `explain` package of PyG provides a set of tools to explain the predictions of a GNN model or to explain the underlying phenomenon of a dataset.
| Example | Description |
| ---------------------------------------------------------------------- | ------------------------------------------------------- |
| [`gnn_explainer.py`](./gnn_explainer.py) | `GNNExplainer` for node classification |
| [`gnn_explainer_link_pred.py`](./gnn_explainer_link_pred.py) | `GNNExplainer` for link prediction |
| [`gnn_explainer_ba_shapes.py`](./gnn_explainer_ba_shapes.py) | `GNNExplainer` applied on the `BAShapes` dataset |
| [`captum_explainer.py`](./captum_explainer.py) | Captum-based explainer for node classification |
| [`captum_explainer_hetero_link.py`](./captum_explainer_hetero_link.py) | Captum-based explainer for heterogenous link prediction |
| [`graphmask_explainer.py`](./graphmask_explainer.py) | `GraphMaskExplainer` for node classification |
|