File: bipartite_sage.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (163 lines) | stat: -rw-r--r-- 5,450 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os.path as osp

import torch
import torch.nn.functional as F
from torch.nn import Embedding, Linear

import torch_geometric.transforms as T
from torch_geometric.datasets import MovieLens
from torch_geometric.nn import SAGEConv
from torch_geometric.nn.conv.gcn_conv import gcn_norm

path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens')
dataset = MovieLens(path, model_name='all-MiniLM-L6-v2')
data = dataset[0]
data['user'].x = torch.arange(data['user'].num_nodes)
data['user', 'movie'].edge_label = data['user', 'movie'].edge_label.float()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = data.to(device)

# Add a reverse ('movie', 'rev_rates', 'user') relation for message passing:
data = T.ToUndirected()(data)
del data['movie', 'rev_rates', 'user'].edge_label  # Remove "reverse" label.

# Perform a link-level split into training, validation, and test edges:
train_data, val_data, test_data = T.RandomLinkSplit(
    num_val=0.1,
    num_test=0.1,
    neg_sampling_ratio=0.0,
    edge_types=[('user', 'rates', 'movie')],
    rev_edge_types=[('movie', 'rev_rates', 'user')],
)(data)

# Generate the co-occurence matrix of movies<>movies:
metapath = [('movie', 'rev_rates', 'user'), ('user', 'rates', 'movie')]
train_data = T.AddMetaPaths(metapaths=[metapath])(train_data)

# Apply normalization to filter the metapath:
_, edge_weight = gcn_norm(
    train_data['movie', 'movie'].edge_index,
    num_nodes=train_data['movie'].num_nodes,
    add_self_loops=False,
)
edge_index = train_data['movie', 'movie'].edge_index[:, edge_weight > 0.002]

train_data['movie', 'metapath_0', 'movie'].edge_index = edge_index
val_data['movie', 'metapath_0', 'movie'].edge_index = edge_index
test_data['movie', 'metapath_0', 'movie'].edge_index = edge_index


class MovieGNNEncoder(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels):
        super().__init__()

        self.conv1 = SAGEConv(-1, hidden_channels)
        self.conv2 = SAGEConv(hidden_channels, hidden_channels)
        self.lin = Linear(hidden_channels, out_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        x = self.conv2(x, edge_index).relu()
        return self.lin(x)


class UserGNNEncoder(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels):
        super().__init__()
        self.conv1 = SAGEConv((-1, -1), hidden_channels)
        self.conv2 = SAGEConv((-1, -1), hidden_channels)
        self.conv3 = SAGEConv((-1, -1), hidden_channels)
        self.lin = Linear(hidden_channels, out_channels)

    def forward(self, x_dict, edge_index_dict):
        movie_x = self.conv1(
            x_dict['movie'],
            edge_index_dict[('movie', 'metapath_0', 'movie')],
        ).relu()

        user_x = self.conv2(
            (x_dict['movie'], x_dict['user']),
            edge_index_dict[('movie', 'rev_rates', 'user')],
        ).relu()

        user_x = self.conv3(
            (movie_x, user_x),
            edge_index_dict[('movie', 'rev_rates', 'user')],
        ).relu()

        return self.lin(user_x)


class EdgeDecoder(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        self.lin1 = Linear(2 * hidden_channels, hidden_channels)
        self.lin2 = Linear(hidden_channels, 1)

    def forward(self, z_src, z_dst, edge_label_index):
        row, col = edge_label_index
        z = torch.cat([z_src[row], z_dst[col]], dim=-1)

        z = self.lin1(z).relu()
        z = self.lin2(z)
        return z.view(-1)


class Model(torch.nn.Module):
    def __init__(self, num_users, hidden_channels, out_channels):
        super().__init__()
        self.user_emb = Embedding(num_users, hidden_channels)
        self.user_encoder = UserGNNEncoder(hidden_channels, out_channels)
        self.movie_encoder = MovieGNNEncoder(hidden_channels, out_channels)
        self.decoder = EdgeDecoder(out_channels)

    def forward(self, x_dict, edge_index_dict, edge_label_index):
        z_dict = {}
        x_dict['user'] = self.user_emb(x_dict['user'])
        z_dict['user'] = self.user_encoder(x_dict, edge_index_dict)
        z_dict['movie'] = self.movie_encoder(
            x_dict['movie'],
            edge_index_dict[('movie', 'metapath_0', 'movie')],
        )
        return self.decoder(z_dict['user'], z_dict['movie'], edge_label_index)


model = Model(data['user'].num_nodes, hidden_channels=64, out_channels=64)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0003)


def train():
    model.train()
    optimizer.zero_grad()
    out = model(
        train_data.x_dict,
        train_data.edge_index_dict,
        train_data['user', 'movie'].edge_label_index,
    )
    loss = F.mse_loss(out, train_data['user', 'movie'].edge_label)
    loss.backward()
    optimizer.step()
    return float(loss)


@torch.no_grad()
def test(data):
    model.eval()
    out = model(
        data.x_dict,
        data.edge_index_dict,
        data['user', 'movie'].edge_label_index,
    ).clamp(min=0, max=5)
    rmse = F.mse_loss(out, data['user', 'movie'].edge_label).sqrt()
    return float(rmse)


for epoch in range(1, 701):
    loss = train()
    train_rmse = test(train_data)
    val_rmse = test(val_data)
    test_rmse = test(test_data)
    print(f'Epoch: {epoch:04d}, Loss: {loss:.4f}, Train: {train_rmse:.4f}, '
          f'Val: {val_rmse:.4f}, Test: {test_rmse:.4f}')