1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
# Reaches around 91.8% Micro-F1 after 5 epochs.
import os.path as osp
import torch
import torch_geometric
from torch_geometric.datasets import AMiner
from torch_geometric.nn import MetaPath2Vec
path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/AMiner')
dataset = AMiner(path)
data = dataset[0]
metapath = [
('author', 'writes', 'paper'),
('paper', 'published_in', 'venue'),
('venue', 'publishes', 'paper'),
('paper', 'written_by', 'author'),
]
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch_geometric.is_xpu_available():
device = torch.device('xpu')
else:
device = torch.device('cpu')
model = MetaPath2Vec(data.edge_index_dict, embedding_dim=128,
metapath=metapath, walk_length=50, context_size=7,
walks_per_node=5, num_negative_samples=5,
sparse=True).to(device)
loader = model.loader(batch_size=128, shuffle=True, num_workers=6)
optimizer = torch.optim.SparseAdam(list(model.parameters()), lr=0.01)
def train(epoch, log_steps=100, eval_steps=2000):
model.train()
total_loss = 0
for i, (pos_rw, neg_rw) in enumerate(loader):
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
if (i + 1) % log_steps == 0:
print(f'Epoch: {epoch}, Step: {i + 1:05d}/{len(loader)}, '
f'Loss: {total_loss / log_steps:.4f}')
total_loss = 0
if (i + 1) % eval_steps == 0:
acc = test()
print(f'Epoch: {epoch}, Step: {i + 1:05d}/{len(loader)}, '
f'Acc: {acc:.4f}')
@torch.no_grad()
def test(train_ratio=0.1):
model.eval()
z = model('author', batch=data['author'].y_index.to(device))
y = data['author'].y
perm = torch.randperm(z.size(0))
train_perm = perm[:int(z.size(0) * train_ratio)]
test_perm = perm[int(z.size(0) * train_ratio):]
return model.test(z[train_perm], y[train_perm], z[test_perm], y[test_perm],
max_iter=150)
for epoch in range(1, 6):
train(epoch)
acc = test()
print(f'Epoch: {epoch}, Accuracy: {acc:.4f}')
|