File: recommender_system.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (221 lines) | stat: -rw-r--r-- 7,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import os.path as osp

import torch
import torch.nn.functional as F
from tqdm import tqdm

import torch_geometric.transforms as T
from torch_geometric import EdgeIndex
from torch_geometric.datasets import MovieLens
from torch_geometric.loader import LinkNeighborLoader, NeighborLoader
from torch_geometric.metrics import (
    LinkPredMAP,
    LinkPredPrecision,
    LinkPredRecall,
)
from torch_geometric.nn import MIPSKNNIndex, SAGEConv, to_hetero

parser = argparse.ArgumentParser()
parser.add_argument('--k', type=int, default=20, help='Number of predictions')
args = parser.parse_args()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens')
data = MovieLens(path, model_name='all-MiniLM-L6-v2')[0]

# Add user node features for message passing:
data['user'].x = torch.eye(data['user'].num_nodes)
del data['user'].num_nodes

# Only use edges with high ratings (>= 4):
mask = data['user', 'rates', 'movie'].edge_label >= 4
data['user', 'movie'].edge_index = data['user', 'movie'].edge_index[:, mask]
data['user', 'movie'].time = data['user', 'movie'].time[mask]
del data['user', 'movie'].edge_label  # Drop rating information from graph.

# Add a reverse ('movie', 'rev_rates', 'user') relation for message passing:
data = T.ToUndirected()(data)

# Perform a temporal link-level split into training and test edges:
edge_label_index = data['user', 'movie'].edge_index
time = data['user', 'movie'].time

perm = time.argsort()
train_index = perm[:int(0.8 * perm.numel())]
test_index = perm[int(0.8 * perm.numel()):]

kwargs = dict(  # Shared data loader arguments:
    data=data,
    num_neighbors=[5, 5, 5],
    batch_size=256,
    time_attr='time',
    num_workers=4,
    persistent_workers=True,
    temporal_strategy='last',
)

train_loader = LinkNeighborLoader(
    edge_label_index=(('user', 'movie'), edge_label_index[:, train_index]),
    edge_label_time=time[train_index] - 1,  # No leakage.
    neg_sampling=dict(mode='binary', amount=2),
    shuffle=True,
    **kwargs,
)

# During testing, we sample node-level subgraphs from both endpoints to
# retrieve their embeddings.
# This allows us to do efficient k-NN search on top of embeddings:
src_loader = NeighborLoader(
    input_nodes='user',
    input_time=(time[test_index].min() - 1).repeat(data['user'].num_nodes),
    **kwargs,
)
dst_loader = NeighborLoader(
    input_nodes='movie',
    input_time=(time[test_index].min() - 1).repeat(data['movie'].num_nodes),
    **kwargs,
)

# Save test edges and the edges we want to exclude when evaluating:
sparse_size = (data['user'].num_nodes, data['movie'].num_nodes)
test_edge_label_index = EdgeIndex(
    edge_label_index[:, test_index].to(device),
    sparse_size=sparse_size,
).sort_by('row')[0]
test_exclude_links = EdgeIndex(
    edge_label_index[:, train_index].to(device),
    sparse_size=sparse_size,
).sort_by('row')[0]


class GNN(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        self.conv1 = SAGEConv((-1, -1), hidden_channels)
        self.conv2 = SAGEConv((-1, -1), hidden_channels)
        self.conv3 = SAGEConv((-1, -1), hidden_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        x = self.conv2(x, edge_index).relu()
        x = self.conv3(x, edge_index)
        return x


class InnerProductDecoder(torch.nn.Module):
    def forward(self, x_dict, edge_label_index):
        x_src = x_dict['user'][edge_label_index[0]]
        x_dst = x_dict['movie'][edge_label_index[1]]
        return (x_src * x_dst).sum(dim=-1)


class Model(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        self.encoder = GNN(hidden_channels)
        self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum')
        self.decoder = InnerProductDecoder()

    def forward(self, x_dict, edge_index_dict, edge_label_index):
        x_dict = self.encoder(x_dict, edge_index_dict)
        return self.decoder(x_dict, edge_label_index)


model = Model(hidden_channels=64).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)


def train():
    model.train()

    total_loss = total_examples = 0
    for batch in tqdm(train_loader):
        batch = batch.to(device)
        optimizer.zero_grad()

        out = model(
            batch.x_dict,
            batch.edge_index_dict,
            batch['user', 'movie'].edge_label_index,
        )
        y = batch['user', 'movie'].edge_label

        loss = F.binary_cross_entropy_with_logits(out, y)
        loss.backward()
        optimizer.step()

        total_loss += float(loss) * y.numel()
        total_examples += y.numel()

    return total_loss / total_examples


@torch.no_grad()
def test(edge_label_index, exclude_links):
    model.eval()

    dst_embs = []
    for batch in dst_loader:  # Collect destination node/movie embeddings:
        batch = batch.to(device)
        emb = model.encoder(batch.x_dict, batch.edge_index_dict)['movie']
        emb = emb[:batch['movie'].batch_size]
        dst_embs.append(emb)
    dst_emb = torch.cat(dst_embs, dim=0)
    del dst_embs

    # Instantiate k-NN index based on maximum inner product search (MIPS):
    mips = MIPSKNNIndex(dst_emb)

    # Initialize metrics:
    map_metric = LinkPredMAP(k=args.k).to(device)
    precision_metric = LinkPredPrecision(k=args.k).to(device)
    recall_metric = LinkPredRecall(k=args.k).to(device)

    num_processed = 0
    for batch in src_loader:  # Collect source node/user embeddings:
        batch = batch.to(device)

        # Compute user embeddings:
        emb = model.encoder(batch.x_dict, batch.edge_index_dict)['user']
        emb = emb[:batch['user'].batch_size]

        # Filter labels/exclusion by current batch:
        _edge_label_index = edge_label_index.sparse_narrow(
            dim=0,
            start=num_processed,
            length=emb.size(0),
        )
        _exclude_links = exclude_links.sparse_narrow(
            dim=0,
            start=num_processed,
            length=emb.size(0),
        )
        num_processed += emb.size(0)

        # Perform MIPS search:
        _, pred_index_mat = mips.search(emb, args.k, _exclude_links)

        # Update retrieval metrics:
        map_metric.update(pred_index_mat, _edge_label_index)
        precision_metric.update(pred_index_mat, _edge_label_index)
        recall_metric.update(pred_index_mat, _edge_label_index)

    return (
        float(map_metric.compute()),
        float(precision_metric.compute()),
        float(recall_metric.compute()),
    )


for epoch in range(1, 16):
    train_loss = train()
    print(f'Epoch: {epoch:02d}, Loss: {train_loss:.4f}')
    val_map, val_precision, val_recall = test(
        test_edge_label_index,
        test_exclude_links,
    )
    print(f'Test MAP@{args.k}: {val_map:.4f}, '
          f'Test Precision@{args.k}: {val_precision:.4f}, '
          f'Test Recall@{args.k}: {val_recall:.4f}')