1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
import argparse
import os.path as osp
import torch
import torch.nn.functional as F
from tqdm import tqdm
import torch_geometric.transforms as T
from torch_geometric import EdgeIndex
from torch_geometric.datasets import MovieLens
from torch_geometric.loader import LinkNeighborLoader, NeighborLoader
from torch_geometric.metrics import (
LinkPredMAP,
LinkPredPrecision,
LinkPredRecall,
)
from torch_geometric.nn import MIPSKNNIndex, SAGEConv, to_hetero
parser = argparse.ArgumentParser()
parser.add_argument('--k', type=int, default=20, help='Number of predictions')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens')
data = MovieLens(path, model_name='all-MiniLM-L6-v2')[0]
# Add user node features for message passing:
data['user'].x = torch.eye(data['user'].num_nodes)
del data['user'].num_nodes
# Only use edges with high ratings (>= 4):
mask = data['user', 'rates', 'movie'].edge_label >= 4
data['user', 'movie'].edge_index = data['user', 'movie'].edge_index[:, mask]
data['user', 'movie'].time = data['user', 'movie'].time[mask]
del data['user', 'movie'].edge_label # Drop rating information from graph.
# Add a reverse ('movie', 'rev_rates', 'user') relation for message passing:
data = T.ToUndirected()(data)
# Perform a temporal link-level split into training and test edges:
edge_label_index = data['user', 'movie'].edge_index
time = data['user', 'movie'].time
perm = time.argsort()
train_index = perm[:int(0.8 * perm.numel())]
test_index = perm[int(0.8 * perm.numel()):]
kwargs = dict( # Shared data loader arguments:
data=data,
num_neighbors=[5, 5, 5],
batch_size=256,
time_attr='time',
num_workers=4,
persistent_workers=True,
temporal_strategy='last',
)
train_loader = LinkNeighborLoader(
edge_label_index=(('user', 'movie'), edge_label_index[:, train_index]),
edge_label_time=time[train_index] - 1, # No leakage.
neg_sampling=dict(mode='binary', amount=2),
shuffle=True,
**kwargs,
)
# During testing, we sample node-level subgraphs from both endpoints to
# retrieve their embeddings.
# This allows us to do efficient k-NN search on top of embeddings:
src_loader = NeighborLoader(
input_nodes='user',
input_time=(time[test_index].min() - 1).repeat(data['user'].num_nodes),
**kwargs,
)
dst_loader = NeighborLoader(
input_nodes='movie',
input_time=(time[test_index].min() - 1).repeat(data['movie'].num_nodes),
**kwargs,
)
# Save test edges and the edges we want to exclude when evaluating:
sparse_size = (data['user'].num_nodes, data['movie'].num_nodes)
test_edge_label_index = EdgeIndex(
edge_label_index[:, test_index].to(device),
sparse_size=sparse_size,
).sort_by('row')[0]
test_exclude_links = EdgeIndex(
edge_label_index[:, train_index].to(device),
sparse_size=sparse_size,
).sort_by('row')[0]
class GNN(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.conv1 = SAGEConv((-1, -1), hidden_channels)
self.conv2 = SAGEConv((-1, -1), hidden_channels)
self.conv3 = SAGEConv((-1, -1), hidden_channels)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index).relu()
x = self.conv3(x, edge_index)
return x
class InnerProductDecoder(torch.nn.Module):
def forward(self, x_dict, edge_label_index):
x_src = x_dict['user'][edge_label_index[0]]
x_dst = x_dict['movie'][edge_label_index[1]]
return (x_src * x_dst).sum(dim=-1)
class Model(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.encoder = GNN(hidden_channels)
self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum')
self.decoder = InnerProductDecoder()
def forward(self, x_dict, edge_index_dict, edge_label_index):
x_dict = self.encoder(x_dict, edge_index_dict)
return self.decoder(x_dict, edge_label_index)
model = Model(hidden_channels=64).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train():
model.train()
total_loss = total_examples = 0
for batch in tqdm(train_loader):
batch = batch.to(device)
optimizer.zero_grad()
out = model(
batch.x_dict,
batch.edge_index_dict,
batch['user', 'movie'].edge_label_index,
)
y = batch['user', 'movie'].edge_label
loss = F.binary_cross_entropy_with_logits(out, y)
loss.backward()
optimizer.step()
total_loss += float(loss) * y.numel()
total_examples += y.numel()
return total_loss / total_examples
@torch.no_grad()
def test(edge_label_index, exclude_links):
model.eval()
dst_embs = []
for batch in dst_loader: # Collect destination node/movie embeddings:
batch = batch.to(device)
emb = model.encoder(batch.x_dict, batch.edge_index_dict)['movie']
emb = emb[:batch['movie'].batch_size]
dst_embs.append(emb)
dst_emb = torch.cat(dst_embs, dim=0)
del dst_embs
# Instantiate k-NN index based on maximum inner product search (MIPS):
mips = MIPSKNNIndex(dst_emb)
# Initialize metrics:
map_metric = LinkPredMAP(k=args.k).to(device)
precision_metric = LinkPredPrecision(k=args.k).to(device)
recall_metric = LinkPredRecall(k=args.k).to(device)
num_processed = 0
for batch in src_loader: # Collect source node/user embeddings:
batch = batch.to(device)
# Compute user embeddings:
emb = model.encoder(batch.x_dict, batch.edge_index_dict)['user']
emb = emb[:batch['user'].batch_size]
# Filter labels/exclusion by current batch:
_edge_label_index = edge_label_index.sparse_narrow(
dim=0,
start=num_processed,
length=emb.size(0),
)
_exclude_links = exclude_links.sparse_narrow(
dim=0,
start=num_processed,
length=emb.size(0),
)
num_processed += emb.size(0)
# Perform MIPS search:
_, pred_index_mat = mips.search(emb, args.k, _exclude_links)
# Update retrieval metrics:
map_metric.update(pred_index_mat, _edge_label_index)
precision_metric.update(pred_index_mat, _edge_label_index)
recall_metric.update(pred_index_mat, _edge_label_index)
return (
float(map_metric.compute()),
float(precision_metric.compute()),
float(recall_metric.compute()),
)
for epoch in range(1, 16):
train_loss = train()
print(f'Epoch: {epoch:02d}, Loss: {train_loss:.4f}')
val_map, val_precision, val_recall = test(
test_edge_label_index,
test_exclude_links,
)
print(f'Test MAP@{args.k}: {val_map:.4f}, '
f'Test Precision@{args.k}: {val_precision:.4f}, '
f'Test Recall@{args.k}: {val_recall:.4f}')
|