File: temporal_link_pred.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (153 lines) | stat: -rw-r--r-- 4,818 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os.path as osp

import torch
import torch.nn.functional as F
from torch.nn import Linear

import torch_geometric.transforms as T
from torch_geometric.datasets import MovieLens
from torch_geometric.loader import LinkNeighborLoader
from torch_geometric.nn import SAGEConv, to_hetero

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens')
dataset = MovieLens(path, model_name='all-MiniLM-L6-v2')
data = dataset[0]

# Add user node features for message passing:
data['user'].x = torch.eye(data['user'].num_nodes, device=device)
del data['user'].num_nodes

# Add a reverse ('movie', 'rev_rates', 'user') relation for message passing:
data = T.ToUndirected()(data)
del data['movie', 'rev_rates', 'user'].edge_label  # Remove "reverse" label.

# Perform a 80/10/10 temporal link-level split:
perm = torch.argsort(data['user', 'movie'].time)
train_idx = perm[:int(0.8 * perm.size(0))]
val_idx = perm[int(0.8 * perm.size(0)):int(0.9 * perm.size(0))]
test_idx = perm[int(0.9 * perm.size(0)):]

edge_index = data['user', 'movie'].edge_index
kwargs = dict(
    data=data,
    num_neighbors=[20, 10],
    batch_size=1024,
    time_attr='time',
    temporal_strategy='last',
    num_workers=4,
    persistent_workers=True,
)
train_loader = LinkNeighborLoader(
    edge_label_index=(('user', 'movie'), edge_index[:, train_idx]),
    edge_label=data['user', 'movie'].edge_label[train_idx],
    edge_label_time=data['user', 'movie'].time[train_idx] - 1,
    shuffle=True,
    **kwargs,
)
val_loader = LinkNeighborLoader(
    edge_label_index=(('user', 'movie'), edge_index[:, val_idx]),
    edge_label=data['user', 'movie'].edge_label[val_idx],
    edge_label_time=data['user', 'movie'].time[val_idx] - 1,
    **kwargs,
)
test_loader = LinkNeighborLoader(
    edge_label_index=(('user', 'movie'), edge_index[:, test_idx]),
    edge_label=data['user', 'movie'].edge_label[test_idx],
    edge_label_time=data['user', 'movie'].time[test_idx] - 1,
    **kwargs,
)


class GNNEncoder(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels):
        super().__init__()
        self.conv1 = SAGEConv((-1, -1), hidden_channels)
        self.conv2 = SAGEConv((-1, -1), out_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        x = self.conv2(x, edge_index)
        return x


class EdgeDecoder(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        self.lin1 = Linear(2 * hidden_channels, hidden_channels)
        self.lin2 = Linear(hidden_channels, 1)

    def forward(self, z_dict, edge_label_index):
        row, col = edge_label_index
        z = torch.cat([z_dict['user'][row], z_dict['movie'][col]], dim=-1)

        z = self.lin1(z).relu()
        z = self.lin2(z)
        return z.view(-1)


class Model(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        self.encoder = GNNEncoder(hidden_channels, hidden_channels)
        self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum')
        self.decoder = EdgeDecoder(hidden_channels)

    def forward(self, x_dict, edge_index_dict, edge_label_index):
        z_dict = self.encoder(x_dict, edge_index_dict)
        return self.decoder(z_dict, edge_label_index)


model = Model(hidden_channels=32).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)


def train():
    model.train()
    total_loss = total_examples = 0
    for batch in train_loader:
        batch = batch.to(device)
        optimizer.zero_grad()
        pred = model(
            batch.x_dict,
            batch.edge_index_dict,
            batch['user', 'movie'].edge_label_index,
        )
        target = batch['user', 'movie'].edge_label.float()
        loss = F.mse_loss(pred, target)
        loss.backward()
        optimizer.step()

        total_loss += float(loss * pred.size(0))
        total_examples += pred.size(0)

    return total_loss / total_examples


@torch.no_grad()
def test(loader):
    model.eval()
    preds, targets = [], []
    for batch in loader:
        batch = batch.to(device)
        pred = model(
            batch.x_dict,
            batch.edge_index_dict,
            batch['user', 'movie'].edge_label_index,
        ).clamp(min=0, max=5)
        preds.append(pred)
        targets.append(batch['user', 'movie'].edge_label.float())

    pred = torch.cat(preds, dim=0)
    target = torch.cat(targets, dim=0)
    rmse = (pred - target).pow(2).mean().sqrt()
    return float(rmse)


for epoch in range(1, 11):
    loss = train()
    val_rmse = test(val_loader)
    test_rmse = test(test_loader)
    print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val RMSE: {val_rmse:.4f}, '
          f'Test RMSE: {test_rmse:.4f}')