1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
import os.path as osp
import torch
import torch.nn.functional as F
from sklearn.metrics import f1_score
from torch import Tensor
from torch.nn import BatchNorm1d
from torch_geometric.datasets import PPI
from torch_geometric.loader import DataLoader
from torch_geometric.nn import FiLMConv
path = osp.join(osp.dirname(osp.realpath(__file__)), 'data', 'PPI')
train_dataset = PPI(path, split='train')
val_dataset = PPI(path, split='val')
test_dataset = PPI(path, split='test')
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=2, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)
class FiLM(torch.nn.Module):
def __init__(self, in_channels: int, hidden_channels: int,
out_channels: int, num_layers: int, dropout: float = 0.0):
super().__init__()
self.dropout = dropout
self.convs = torch.nn.ModuleList()
self.convs.append(FiLMConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):
conv = FiLMConv(hidden_channels, hidden_channels)
self.convs.append(conv)
self.last_conv = FiLMConv(hidden_channels, out_channels, act=None)
self.norms = torch.nn.ModuleList()
for _ in range(num_layers - 1):
self.norms.append(BatchNorm1d(hidden_channels))
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
for conv, norm in zip(self.convs, self.norms):
x = norm(conv(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.last_conv(x, edge_index)
return x
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FiLM(train_dataset.num_features, 320, train_dataset.num_classes,
num_layers=4, dropout=0.1)
model = torch.jit.script(model).to(device)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
def train():
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
loss = criterion(model(data.x, data.edge_index), data.y)
total_loss += loss.item() * data.num_graphs
loss.backward()
optimizer.step()
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
ys, preds = [], []
for data in loader:
ys.append(data.y)
out = model(data.x.to(device), data.edge_index.to(device))
preds.append((out > 0).float().cpu())
y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
return f1_score(y, pred, average='micro') if pred.sum() > 0 else 0
for epoch in range(1, 501):
loss = train()
val_f1 = test(val_loader)
test_f1 = test(test_loader)
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_f1:.4f}, '
f'Test: {test_f1:.4f}')
|