File: README.md

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (25 lines) | stat: -rw-r--r-- 6,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Examples for Distributed Training

## Examples with NVIDIA GPUs

| Example                                                                            | Scalability | Description                                                                                                                                                                                                                                                                                     |
| ---------------------------------------------------------------------------------- | ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`distributed_batching.py`](./distributed_batching.py)                             | single-node | Example for training GNNs on multiple graphs.                                                                                                                                                                                                                                                   |
| [`distributed_sampling.py`](./distributed_sampling.py)                             | single-node | Example for training GNNs on a homogeneous graph with neighbor sampling.                                                                                                                                                                                                                        |
| [`distributed_sampling_multinode.py`](./distributed_sampling_multinode.py)         | multi-node  | Example for training GNNs on a homogeneous graph with neighbor sampling on multiple nodes.                                                                                                                                                                                                      |
| [`distributed_sampling_multinode.sbatch`](./distributed_sampling_multinode.sbatch) | multi-node  | Example for submitting a training job to a Slurm cluster using [`distributed_sampling_multi_node.py`](./distributed_sampling_multinode.py).                                                                                                                                                     |
| [`papers100m_gcn.py`](./papers100m_gcn.py)                                         | single-node | Example for training GNNs on the `ogbn-papers100M` homogeneous graph w/ ~1.6B edges.                                                                                                                                                                                                            |
| [`papers100m_gcn_cugraph.py`](./papers100m_gcn_cugraph.py)                         | single-node | Example for training GNNs on `ogbn-papers100M` using [CuGraph](...).                                                                                                                                                                                                                            |
| [`papers100m_gcn_multinode.py`](./papers100m_gcn_multinode.py)                     | multi-node  | Example for training GNNs on a homogeneous graph on multiple nodes.                                                                                                                                                                                                                             |
| [`papers100m_gcn_cugraph_multinode.py`](./papers100m_gcn_cugraph_multinode.py)     | multi-node  | Example for training GNNs on a homogeneous graph on multiple nodes using [CuGraph](...).                                                                                                                                                                                                        |
| [`pcqm4m_ogb.py`](./pcqm4m_ogb.py)                                                 | single-node | Example for training GNNs for a graph-level regression task.                                                                                                                                                                                                                                    |
| [`mag240m_graphsage.py`](./mag240m_graphsage.py)                                   | single-node | Example for training GNNs on a large heterogeneous graph.                                                                                                                                                                                                                                       |
| [`taobao.py`](./taobao.py)                                                         | single-node | Example for training link prediction GNNs on a heterogeneous graph.                                                                                                                                                                                                                             |
| [`model_parallel.py`](./model_parallel.py)                                         | single-node | Example for model parallelism by manually placing layers on each GPU.                                                                                                                                                                                                                           |
| [`data_parallel.py`](./data_parallel.py)                                           | single-node | Example for training GNNs on multiple graphs. Note that [`torch_geometric.nn.DataParallel`](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.data_parallel.DataParallel) is deprecated and [discouraged](https://github.com/pytorch/pytorch/issues/65936). |

## Examples with Intel GPUs (XPUs)

| Example                                                        | Scalability            | Description                                                              |
| -------------------------------------------------------------- | ---------------------- | ------------------------------------------------------------------------ |
| [`distributed_sampling_xpu.py`](./distributed_sampling_xpu.py) | single-node, multi-gpu | Example for training GNNs on a homogeneous graph with neighbor sampling. |