1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from ogb.graphproppred import Evaluator
from ogb.graphproppred import PygGraphPropPredDataset as Dataset
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder
from torch.nn import BatchNorm1d as BatchNorm
from torch.nn import Linear, ReLU, Sequential
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
import torch_geometric.transforms as T
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GINEConv, global_mean_pool
from torch_geometric.typing import WITH_TORCH_SPARSE
if not WITH_TORCH_SPARSE:
quit("This example requires 'torch-sparse'")
class GIN(torch.nn.Module):
def __init__(self, hidden_channels, out_channels, num_layers=3,
dropout=0.5):
super().__init__()
self.dropout = dropout
self.atom_encoder = AtomEncoder(hidden_channels)
self.bond_encoder = BondEncoder(hidden_channels)
self.convs = torch.nn.ModuleList()
for _ in range(num_layers):
nn = Sequential(
Linear(hidden_channels, 2 * hidden_channels),
BatchNorm(2 * hidden_channels),
ReLU(),
Linear(2 * hidden_channels, hidden_channels),
BatchNorm(hidden_channels),
ReLU(),
)
self.convs.append(GINEConv(nn, train_eps=True))
self.lin = Linear(hidden_channels, out_channels)
def forward(self, x, adj_t, batch):
x = self.atom_encoder(x)
edge_attr = adj_t.coo()[2]
adj_t = adj_t.set_value(self.bond_encoder(edge_attr), layout='coo')
for conv in self.convs:
x = conv(x, adj_t)
x = F.dropout(x, p=self.dropout, training=self.training)
x = global_mean_pool(x, batch)
x = self.lin(x)
return x
def run(rank, world_size: int, dataset_name: str, root: str):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
dataset = Dataset(dataset_name, root,
pre_transform=T.ToSparseTensor(attr='edge_attr'))
split_idx = dataset.get_idx_split()
evaluator = Evaluator(dataset_name)
train_dataset = dataset[split_idx['train']]
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size,
rank=rank)
train_loader = DataLoader(train_dataset, batch_size=128,
sampler=train_sampler)
torch.manual_seed(12345)
model = GIN(128, dataset.num_tasks, num_layers=3, dropout=0.5).to(rank)
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.BCEWithLogitsLoss()
if rank == 0:
val_loader = DataLoader(dataset[split_idx['valid']], batch_size=256)
test_loader = DataLoader(dataset[split_idx['test']], batch_size=256)
for epoch in range(1, 51):
model.train()
total_loss = torch.zeros(2).to(rank)
for data in train_loader:
data = data.to(rank)
optimizer.zero_grad()
logits = model(data.x, data.adj_t, data.batch)
loss = criterion(logits, data.y.to(torch.float))
loss.backward()
optimizer.step()
total_loss[0] += float(loss) * logits.size(0)
total_loss[1] += data.num_graphs
dist.all_reduce(total_loss, op=dist.ReduceOp.SUM)
loss = float(total_loss[0] / total_loss[1])
if rank == 0: # We evaluate on a single GPU for now.
model.eval()
y_pred, y_true = [], []
for data in val_loader:
data = data.to(rank)
with torch.no_grad():
y_pred.append(model.module(data.x, data.adj_t, data.batch))
y_true.append(data.y)
val_rocauc = evaluator.eval({
'y_pred': torch.cat(y_pred, dim=0),
'y_true': torch.cat(y_true, dim=0),
})['rocauc']
y_pred, y_true = [], []
for data in test_loader:
data = data.to(rank)
with torch.no_grad():
y_pred.append(model.module(data.x, data.adj_t, data.batch))
y_true.append(data.y)
test_rocauc = evaluator.eval({
'y_pred': torch.cat(y_pred, dim=0),
'y_true': torch.cat(y_true, dim=0),
})['rocauc']
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, '
f'Val: {val_rocauc:.4f}, Test: {test_rocauc:.4f}')
dist.barrier()
dist.destroy_process_group()
if __name__ == '__main__':
dataset_name = 'ogbg-molhiv'
root = '../../data/OGB'
# Download and process the dataset on main process.
Dataset(dataset_name, root,
pre_transform=T.ToSparseTensor(attr='edge_attr'))
world_size = torch.cuda.device_count()
print('Let\'s use', world_size, 'GPUs!')
args = (world_size, dataset_name, root)
mp.spawn(run, args=args, nprocs=world_size, join=True)
|