File: distributed_sampling.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (135 lines) | stat: -rw-r--r-- 4,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel

from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import SAGEConv


class SAGE(torch.nn.Module):
    def __init__(self, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int = 2):
        super().__init__()

        self.convs = torch.nn.ModuleList()
        self.convs.append(SAGEConv(in_channels, hidden_channels))
        for _ in range(num_layers - 2):
            self.convs.append(SAGEConv(hidden_channels, hidden_channels))
        self.convs.append(SAGEConv(hidden_channels, out_channels))

    def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
        for i, conv in enumerate(self.convs):
            x = conv(x, edge_index)
            if i < len(self.convs) - 1:
                x = x.relu()
                x = F.dropout(x, p=0.5, training=self.training)
        return x


@torch.no_grad()
def test(loader, model, rank):
    model.eval()

    total_correct = total_examples = 0
    for i, batch in enumerate(loader):
        out = model(batch.x, batch.edge_index.to(rank))
        pred = out[:batch.batch_size].argmax(dim=-1)
        y = batch.y[:batch.batch_size].to(rank)
        total_correct += int((pred == y).sum())
        total_examples += batch.batch_size
    return torch.tensor(total_correct / total_examples, device=rank)


def run(rank, world_size, dataset):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'
    dist.init_process_group('nccl', rank=rank, world_size=world_size)

    data = dataset[0]
    data = data.to(rank, 'x', 'y')  # Move to device for faster feature fetch.

    # Split indices into `world_size` many chunks:
    train_idx = data.train_mask.nonzero(as_tuple=False).view(-1)
    train_idx = train_idx.split(train_idx.size(0) // world_size)[rank]
    val_idx = data.val_mask.nonzero(as_tuple=False).view(-1)
    val_idx = val_idx.split(val_idx.size(0) // world_size)[rank]
    test_idx = data.val_mask.nonzero(as_tuple=False).view(-1)
    test_idx = test_idx.split(test_idx.size(0) // world_size)[rank]

    kwargs = dict(
        data=data,
        batch_size=1024,
        num_neighbors=[25, 10],
        drop_last=True,
        num_workers=4,
        persistent_workers=True,
    )
    train_loader = NeighborLoader(
        input_nodes=train_idx,
        shuffle=True,
        **kwargs,
    )
    val_loader = NeighborLoader(
        input_nodes=val_idx,
        shuffle=False,
        **kwargs,
    )
    test_loader = NeighborLoader(
        input_nodes=test_idx,
        shuffle=False,
        **kwargs,
    )

    torch.manual_seed(12345)
    model = SAGE(dataset.num_features, 256, dataset.num_classes).to(rank)
    model = DistributedDataParallel(model, device_ids=[rank])
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    for epoch in range(1, 21):
        model.train()
        for batch in train_loader:
            optimizer.zero_grad()
            out = model(batch.x, batch.edge_index.to(rank))[:batch.batch_size]
            loss = F.cross_entropy(out, batch.y[:batch.batch_size])
            loss.backward()
            optimizer.step()

        dist.barrier()

        if rank == 0:
            print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')

        if epoch % 5 == 0:
            train_acc = test(train_loader, model, rank)
            val_acc = test(val_loader, model, rank)
            test_acc = test(test_loader, model, rank)

            if world_size > 1:
                dist.all_reduce(train_acc, op=dist.ReduceOp.SUM)
                dist.all_reduce(train_acc, op=dist.ReduceOp.SUM)
                dist.all_reduce(train_acc, op=dist.ReduceOp.SUM)
                train_acc /= world_size
                val_acc /= world_size
                test_acc /= world_size

            if rank == 0:
                print(f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, '
                      f'Test: {test_acc:.4f}')

        dist.barrier()

    dist.destroy_process_group()


if __name__ == '__main__':
    dataset = Reddit('../../data/Reddit')

    world_size = torch.cuda.device_count()
    print("Let's use", world_size, "GPUs!")
    mp.spawn(run, args=(world_size, dataset), nprocs=world_size, join=True)