1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
import copy
import os
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import SAGEConv
class SAGE(torch.nn.Module):
def __init__(
self,
in_channels: int,
hidden_channels: int,
out_channels: int,
num_layers: int = 2,
):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
for i, conv in enumerate(self.convs):
x = conv(x, edge_index)
if i < len(self.convs) - 1:
x = x.relu_()
x = F.dropout(x, p=0.5, training=self.training)
return x
@torch.no_grad()
def inference(
self,
x_all: Tensor,
device: torch.device,
subgraph_loader: NeighborLoader,
) -> Tensor:
pbar = tqdm(total=len(subgraph_loader) * len(self.convs))
pbar.set_description('Evaluating')
# Compute representations of nodes layer by layer, using *all*
# available edges. This leads to faster computation in contrast to
# immediately computing the final representations of each batch:
for i, conv in enumerate(self.convs):
xs = []
for batch in subgraph_loader:
x = x_all[batch.node_id.to(x_all.device)].to(device)
x = conv(x, batch.edge_index.to(device))
x = x[:batch.batch_size]
if i < len(self.convs) - 1:
x = x.relu_()
xs.append(x.cpu())
pbar.update(1)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
def run(world_size: int, rank: int, local_rank: int):
# Will query the runtime environment for `MASTER_ADDR` and `MASTER_PORT`.
# Make sure, those are set!
dist.init_process_group('nccl', world_size=world_size, rank=rank)
# Download and unzip only with one process ...
if rank == 0:
dataset = Reddit('data/Reddit')
dist.barrier()
# ... and then read from all the other processes:
if rank != 0:
dataset = Reddit('data/Reddit')
dist.barrier()
data = dataset[0]
# Move to device for faster feature fetch.
data = data.to(local_rank, 'x', 'y')
# Split training indices into `world_size` many chunks:
train_idx = data.train_mask.nonzero(as_tuple=False).view(-1)
train_idx = train_idx.split(train_idx.size(0) // world_size)[rank]
kwargs = dict(batch_size=1024, num_workers=4, persistent_workers=True)
train_loader = NeighborLoader(
data,
input_nodes=train_idx,
num_neighbors=[25, 10],
shuffle=True,
drop_last=True,
**kwargs,
)
if rank == 0: # Create single-hop evaluation neighbor loader:
subgraph_loader = NeighborLoader(
copy.copy(data),
num_neighbors=[-1],
shuffle=False,
**kwargs,
)
# No need to maintain these features during evaluation:
del subgraph_loader.data.x, subgraph_loader.data.y
# Add global node index information:
subgraph_loader.data.node_id = torch.arange(data.num_nodes)
torch.manual_seed(12345)
model = SAGE(dataset.num_features, 256, dataset.num_classes).to(local_rank)
model = DistributedDataParallel(model, device_ids=[local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1, 21):
model.train()
for batch in train_loader:
optimizer.zero_grad()
out = model(batch.x,
batch.edge_index.to(local_rank))[:batch.batch_size]
loss = F.cross_entropy(out, batch.y[:batch.batch_size])
loss.backward()
optimizer.step()
dist.barrier()
if rank == 0:
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')
if rank == 0 and epoch % 5 == 0: # We evaluate on a single GPU for now
model.eval()
with torch.no_grad():
out = model.module.inference(
data.x,
local_rank,
subgraph_loader,
)
res = out.argmax(dim=-1) == data.y.to(out.device)
acc1 = int(res[data.train_mask].sum()) / int(data.train_mask.sum())
acc2 = int(res[data.val_mask].sum()) / int(data.val_mask.sum())
acc3 = int(res[data.test_mask].sum()) / int(data.test_mask.sum())
print(f'Train: {acc1:.4f}, Val: {acc2:.4f}, Test: {acc3:.4f}')
dist.barrier()
dist.destroy_process_group()
if __name__ == '__main__':
# Get the world size from the WORLD_SIZE variable or directly from SLURM:
world_size = int(
os.environ.get('WORLD_SIZE', os.environ.get('SLURM_NTASKS')))
# Likewise for RANK and LOCAL_RANK:
rank = int(os.environ.get('RANK', os.environ.get('SLURM_PROCID')))
local_rank = int(
os.environ.get('LOCAL_RANK', os.environ.get('SLURM_LOCALID')))
run(world_size, rank, local_rank)
|