1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
import argparse
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from ogb.lsc import MAG240MDataset
from torch.nn.parallel import DistributedDataParallel
from torchmetrics import Accuracy
from tqdm import tqdm
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import BatchNorm, HeteroConv, SAGEConv
def common_step(batch, model):
batch_size = batch['paper'].batch_size
x_dict = model(batch.x_dict, batch.edge_index_dict)
y_hat = x_dict['paper'][:batch_size]
y = batch['paper'].y[:batch_size].to(torch.long)
return y_hat, y
def training_step(batch, acc, model):
y_hat, y = common_step(batch, model)
train_loss = F.cross_entropy(y_hat, y)
acc(y_hat, y)
return train_loss
def validation_step(batch, acc, model):
y_hat, y = common_step(batch, model)
acc(y_hat, y)
class HeteroSAGEConv(torch.nn.Module):
def __init__(self, in_channels, out_channels, dropout, node_types,
edge_types, is_output_layer=False):
super().__init__()
self.conv = HeteroConv({
edge_type: SAGEConv(in_channels, out_channels)
for edge_type in edge_types
})
if not is_output_layer:
self.dropout = torch.nn.Dropout(dropout)
self.norm_dict = torch.nn.ModuleDict({
node_type:
BatchNorm(out_channels)
for node_type in node_types
})
self.is_output_layer = is_output_layer
def forward(self, x_dict, edge_index_dict):
x_dict = self.conv(x_dict, edge_index_dict)
if not self.is_output_layer:
for node_type, x in x_dict.items():
x = self.dropout(x.relu())
x = self.norm_dict[node_type](x)
x_dict[node_type] = x
return x_dict
class HeteroGraphSAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, num_layers, out_channels,
dropout, node_types, edge_types):
super().__init__()
self.convs = torch.nn.ModuleList()
for i in range(num_layers):
# Since authors and institution do not come with features, we learn
# them via the GNN. However, this also means we need to exclude
# them as source types in the first two iterations:
if i == 0:
edge_types_of_layer = [
edge_type for edge_type in edge_types
if edge_type[0] == 'paper'
]
elif i == 1:
edge_types_of_layer = [
edge_type for edge_type in edge_types
if edge_type[0] != 'institution'
]
else:
edge_types_of_layer = edge_types
conv = HeteroSAGEConv(
in_channels if i == 0 else hidden_channels,
out_channels if i == num_layers - 1 else hidden_channels,
dropout=dropout,
node_types=node_types,
edge_types=edge_types_of_layer,
is_output_layer=i == num_layers - 1,
)
self.convs.append(conv)
def forward(self, x_dict, edge_index_dict):
for conv in self.convs:
x_dict = conv(x_dict, edge_index_dict)
return x_dict
def run(
rank,
data,
num_devices=1,
num_epochs=1,
num_steps_per_epoch=-1,
log_every_n_steps=1,
batch_size=1024,
num_neighbors=[25, 15],
hidden_channels=1024,
dropout=0.5,
num_val_steps=100,
lr=.001,
):
if num_devices > 1:
if rank == 0:
print("Setting up distributed...")
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=num_devices)
acc = Accuracy(task='multiclass', num_classes=data.num_classes)
model = HeteroGraphSAGE(
in_channels=-1,
hidden_channels=hidden_channels,
num_layers=len(num_neighbors),
out_channels=data.num_classes,
dropout=dropout,
node_types=data.node_types,
edge_types=data.edge_types,
)
train_idx = data['paper'].train_mask.nonzero(as_tuple=False).view(-1)
val_idx = data['paper'].val_mask.nonzero(as_tuple=False).view(-1)
if num_devices > 1: # Split indices into `num_devices` many chunks:
train_idx = train_idx.split(train_idx.size(0) // num_devices)[rank]
val_idx = val_idx.split(val_idx.size(0) // num_devices)[rank]
# Delete unused tensors to not sample:
del data['paper'].train_mask
del data['paper'].val_mask
del data['paper'].test_mask
del data['paper'].year
kwargs = dict(
batch_size=batch_size,
num_workers=16,
persistent_workers=True,
num_neighbors=num_neighbors,
drop_last=True,
)
train_loader = NeighborLoader(
data,
input_nodes=('paper', train_idx),
shuffle=True,
**kwargs,
)
val_loader = NeighborLoader(data, input_nodes=('paper', val_idx), **kwargs)
if num_devices > 0:
model = model.to(rank)
acc = acc.to(rank)
if num_devices > 1:
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
for epoch in range(1, num_epochs + 1):
model.train()
for i, batch in enumerate(tqdm(train_loader)):
if num_steps_per_epoch >= 0 and i >= num_steps_per_epoch:
break
if num_devices > 0:
batch = batch.to(rank, 'x', 'y', 'edge_index')
# Features loaded in as 16 bits, train in 32 bits:
batch['paper'].x = batch['paper'].x.to(torch.float32)
optimizer.zero_grad()
loss = training_step(batch, acc, model)
loss.backward()
optimizer.step()
if i % log_every_n_steps == 0:
if rank == 0:
print(f"Epoch: {epoch:02d}, Step: {i:d}, "
f"Loss: {loss:.4f}, "
f"Train Acc: {acc.compute():.4f}")
if num_devices > 1:
dist.barrier()
if rank == 0:
print(f"Epoch: {epoch:02d}, Loss: {loss:.4f}, "
f"Train Acc :{acc.compute():.4f}")
acc.reset()
model.eval()
with torch.no_grad():
for i, batch in enumerate(tqdm(val_loader)):
if num_val_steps >= 0 and i >= num_val_steps:
break
if num_devices > 0:
batch = batch.to(rank, 'x', 'y', 'edge_index')
batch['paper'].x = batch['paper'].x.to(torch.float32)
validation_step(batch, acc, model)
if num_devices > 1:
dist.barrier()
if rank == 0:
print(f"Val Acc: {acc.compute():.4f}")
acc.reset()
model.eval()
if num_devices > 1:
dist.destroy_process_group()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--hidden_channels", type=int, default=1024)
parser.add_argument("--batch_size", type=int, default=1024)
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--num_epochs", type=int, default=20)
parser.add_argument("--num_steps_per_epoch", type=int, default=-1)
parser.add_argument("--log_every_n_steps", type=int, default=100)
parser.add_argument("--num_val_steps", type=int, default=-1, help=50)
parser.add_argument("--num_neighbors", type=str, default="25-15")
parser.add_argument("--num_devices", type=int, default=1)
args = parser.parse_args()
args.num_neighbors = [int(i) for i in args.num_neighbors.split('-')]
import warnings
warnings.simplefilter("ignore")
if not torch.cuda.is_available():
args.num_devices = 0
elif args.num_devices > torch.cuda.device_count():
args.num_devices = torch.cuda.device_count()
dataset = MAG240MDataset()
data = dataset.to_pyg_hetero_data()
if args.num_devices > 1:
print("Let's use", args.num_devices, "GPUs!")
from torch.multiprocessing.spawn import ProcessExitedException
try:
mp.spawn(
run,
args=(
data,
args.num_devices,
args.num_epochs,
args.num_steps_per_epoch,
args.log_every_n_steps,
args.batch_size,
args.num_neighbors,
args.hidden_channels,
args.dropout,
args.num_val_steps,
args.lr,
),
nprocs=args.num_devices,
join=True,
)
except ProcessExitedException as e:
print("torch.multiprocessing.spawn.ProcessExitedException:", e)
print("Exceptions/SIGBUS/Errors may be caused by a lack of RAM")
else:
run(
0,
data,
args.num_devices,
args.num_epochs,
args.num_steps_per_epoch,
args.log_every_n_steps,
args.batch_size,
args.num_neighbors,
args.hidden_channels,
args.dropout,
args.num_val_steps,
args.lr,
)
|