File: papers100m_gcn.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (202 lines) | stat: -rw-r--r-- 7,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
import tempfile
import time

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from ogb.nodeproppred import PygNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel
from torchmetrics import Accuracy

import torch_geometric
from torch_geometric.loader import NeighborLoader


def get_num_workers(world_size):
    num_work = None
    if hasattr(os, "sched_getaffinity"):
        try:
            num_work = len(os.sched_getaffinity(0)) / (2 * world_size)
        except Exception:
            pass
    if num_work is None:
        num_work = os.cpu_count() / (2 * world_size)
    return int(num_work)


def run_train(rank, data, world_size, model, epochs, batch_size, fan_out,
              split_idx, num_classes, wall_clock_start, tempdir=None,
              num_layers=3):

    # init pytorch worker
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'
    dist.init_process_group('nccl', rank=rank, world_size=world_size)

    if world_size > 1:
        split_idx['train'] = split_idx['train'].split(
            split_idx['train'].size(0) // world_size, dim=0)[rank].clone()
        split_idx['valid'] = split_idx['valid'].split(
            split_idx['valid'].size(0) // world_size, dim=0)[rank].clone()
        split_idx['test'] = split_idx['test'].split(
            split_idx['test'].size(0) // world_size, dim=0)[rank].clone()
    model = model.to(rank)
    model = DistributedDataParallel(model, device_ids=[rank])
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01,
                                 weight_decay=0.0005)

    kwargs = dict(
        num_neighbors=[fan_out] * num_layers,
        batch_size=batch_size,
    )
    num_work = get_num_workers(world_size)
    train_loader = NeighborLoader(data, input_nodes=split_idx['train'],
                                  num_workers=num_work, shuffle=True,
                                  drop_last=True, **kwargs)
    val_loader = NeighborLoader(data, input_nodes=split_idx['valid'],
                                num_workers=num_work, **kwargs)
    test_loader = NeighborLoader(data, input_nodes=split_idx['test'],
                                 num_workers=num_work, **kwargs)

    eval_steps = 1000
    warmup_steps = 20
    acc = Accuracy(task="multiclass", num_classes=num_classes).to(rank)
    dist.barrier()
    torch.cuda.synchronize()
    if rank == 0:
        prep_time = round(time.perf_counter() - wall_clock_start, 2)
        print("Total time before training begins (prep_time) =", prep_time,
              "seconds")
        print("Beginning training...")
    for epoch in range(epochs):
        for i, batch in enumerate(train_loader):
            if i == warmup_steps:
                torch.cuda.synchronize()
                start = time.time()
            batch = batch.to(rank)
            batch_size = batch.num_sampled_nodes[0]
            batch.y = batch.y.to(torch.long)
            optimizer.zero_grad()
            out = model(batch.x, batch.edge_index)
            loss = F.cross_entropy(out[:batch_size], batch.y[:batch_size])
            loss.backward()
            optimizer.step()
            if rank == 0 and i % 10 == 0:
                print("Epoch: " + str(epoch) + ", Iteration: " + str(i) +
                      ", Loss: " + str(loss))
        nb = i + 1.0
        dist.barrier()
        torch.cuda.synchronize()
        if rank == 0:
            print("Average Training Iteration Time:",
                  (time.time() - start) / (nb - warmup_steps), "s/iter")
        with torch.no_grad():
            for i, batch in enumerate(val_loader):
                if i >= eval_steps:
                    break

                batch = batch.to(rank)
                batch_size = batch.num_sampled_nodes[0]

                batch.y = batch.y.to(torch.long)
                out = model(batch.x, batch.edge_index)
                acc_i = acc(  # noqa
                    out[:batch_size].softmax(dim=-1), batch.y[:batch_size])
            acc_sum = acc.compute()
            if rank == 0:
                print(f"Validation Accuracy: {acc_sum * 100.0:.4f}%", )
        dist.barrier()
        acc.reset()

    with torch.no_grad():
        for i, batch in enumerate(test_loader):
            batch = batch.to(rank)
            batch_size = batch.num_sampled_nodes[0]

            batch.y = batch.y.to(torch.long)
            out = model(batch.x, batch.edge_index)
            acc_i = acc(  # noqa
                out[:batch_size].softmax(dim=-1), batch.y[:batch_size])
        acc_sum = acc.compute()
        if rank == 0:
            print(f"Test Accuracy: {acc_sum * 100.0:.4f}%", )
    dist.barrier()
    acc.reset()
    if rank == 0:
        total_time = round(time.perf_counter() - wall_clock_start, 2)
        print("Total Program Runtime (total_time) =", total_time, "seconds")
        print("total_time - prep_time =", total_time - prep_time, "seconds")


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--hidden_channels', type=int, default=256)
    parser.add_argument('--num_layers', type=int, default=2)
    parser.add_argument('--lr', type=float, default=0.001)
    parser.add_argument('--epochs', type=int, default=20)
    parser.add_argument('--batch_size', type=int, default=1024)
    parser.add_argument('--fan_out', type=int, default=30)
    parser.add_argument(
        "--use_gat_conv",
        action='store_true',
        help="Whether or not to use GATConv. (Defaults to using GCNConv)",
    )
    parser.add_argument(
        "--n_gat_conv_heads",
        type=int,
        default=4,
        help="If using GATConv, number of attention heads to use",
    )
    parser.add_argument(
        "--n_devices", type=int, default=-1,
        help="1-8 to use that many GPUs. Defaults to all available GPUs")

    args = parser.parse_args()
    wall_clock_start = time.perf_counter()
    if args.n_devices == -1:
        world_size = torch.cuda.device_count()
    else:
        world_size = args.n_devices
    import psutil
    gb_ram_needed = 190 + 200 * world_size
    if (psutil.virtual_memory().total / (1024**3)) < gb_ram_needed:
        print("Warning: may not have enough RAM to use this many GPUs.")
        print("Consider upgrading RAM or using less GPUs if an error occurs.")
        print("Estimated RAM Needed: ~" + str(gb_ram_needed))
    print('Let\'s use', world_size, 'GPUs!')
    dataset = PygNodePropPredDataset(name='ogbn-papers100M',
                                     root='/datasets/ogb_datasets')
    split_idx = dataset.get_idx_split()
    data = dataset[0]
    data.y = data.y.reshape(-1)
    if args.use_gat_conv:
        model = torch_geometric.nn.models.GAT(dataset.num_features,
                                              args.hidden_channels,
                                              args.num_layers,
                                              dataset.num_classes,
                                              heads=args.n_gat_conv_heads)
    else:
        model = torch_geometric.nn.models.GCN(
            dataset.num_features,
            args.hidden_channels,
            args.num_layers,
            dataset.num_classes,
        )

    print("Data =", data)
    with tempfile.TemporaryDirectory() as tempdir:
        if world_size > 1:
            mp.spawn(
                run_train,
                args=(data, world_size, model, args.epochs, args.batch_size,
                      args.fan_out, split_idx, dataset.num_classes,
                      wall_clock_start, tempdir, args.num_layers),
                nprocs=world_size, join=True)
        else:
            run_train(0, data, world_size, model, args.epochs, args.batch_size,
                      args.fan_out, split_idx, dataset.num_classes,
                      wall_clock_start, tempdir, args.num_layers)