1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
"""Single-node, multi-GPU example."""
import argparse
import os
import os.path as osp
import tempfile
import time
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from ogb.nodeproppred import PygNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel
import torch_geometric
# Allow computation on objects that are larger than GPU memory
# https://docs.rapids.ai/api/cudf/stable/developer_guide/library_design/#spilling-to-host-memory
os.environ['CUDF_SPILL'] = '1'
# Ensures that a CUDA context is not created on import of rapids.
# Allows pytorch to create the context instead
os.environ['RAPIDS_NO_INITIALIZE'] = '1'
def init_pytorch_worker(rank, world_size, cugraph_id):
import rmm
rmm.reinitialize(
devices=rank,
managed_memory=True,
pool_allocator=True,
)
import cupy
cupy.cuda.Device(rank).use()
from rmm.allocators.cupy import rmm_cupy_allocator
cupy.cuda.set_allocator(rmm_cupy_allocator)
from cugraph.testing.mg_utils import enable_spilling
enable_spilling()
torch.cuda.set_device(rank)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
from cugraph.gnn import cugraph_comms_init
cugraph_comms_init(rank=rank, world_size=world_size, uid=cugraph_id,
device=rank)
def run(rank, data, world_size, cugraph_id, model, epochs, batch_size, fan_out,
split_idx, num_classes, wall_clock_start, tempdir=None, num_layers=3):
init_pytorch_worker(
rank,
world_size,
cugraph_id,
)
model = model.to(rank)
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = torch.optim.Adam(model.parameters(), lr=0.01,
weight_decay=0.0005)
kwargs = dict(
num_neighbors=[fan_out] * num_layers,
batch_size=batch_size,
)
from cugraph_pyg.data import GraphStore, TensorDictFeatureStore
from cugraph_pyg.loader import NeighborLoader
graph_store = GraphStore(is_multi_gpu=True)
ixr = torch.tensor_split(data.edge_index, world_size, dim=1)[rank]
graph_store[dict(
edge_type=('node', 'rel', 'node'),
layout='coo',
is_sorted=False,
size=(data.num_nodes, data.num_nodes),
)] = ixr
feature_store = TensorDictFeatureStore()
feature_store['node', 'x'] = data.x
feature_store['node', 'y'] = data.y
dist.barrier()
ix_train = torch.tensor_split(split_idx['train'], world_size)[rank].cuda()
train_path = osp.join(tempdir, f'train_{rank}')
os.mkdir(train_path)
train_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_train,
directory=train_path,
shuffle=True,
drop_last=True,
**kwargs,
)
ix_val = torch.tensor_split(split_idx['valid'], world_size)[rank].cuda()
val_path = osp.join(tempdir, f'val_{rank}')
os.mkdir(val_path)
val_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_val,
directory=val_path,
drop_last=True,
**kwargs,
)
ix_test = torch.tensor_split(split_idx['test'], world_size)[rank].cuda()
test_path = osp.join(tempdir, f'test_{rank}')
os.mkdir(test_path)
test_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_test,
directory=test_path,
drop_last=True,
local_seeds_per_call=80000,
**kwargs,
)
dist.barrier()
eval_steps = 1000
warmup_steps = 20
dist.barrier()
torch.cuda.synchronize()
if rank == 0:
prep_time = time.perf_counter() - wall_clock_start
print(f"Preparation time: {prep_time:.2f}s")
for epoch in range(1, epochs + 1):
for i, batch in enumerate(train_loader):
if i == warmup_steps:
torch.cuda.synchronize()
start = time.time()
batch = batch.to(rank)
batch_size = batch.batch_size
batch.y = batch.y.to(torch.long)
optimizer.zero_grad()
out = model(batch.x, batch.edge_index)
loss = F.cross_entropy(out[:batch_size], batch.y[:batch_size])
loss.backward()
optimizer.step()
if rank == 0 and i % 10 == 0:
print(f"Epoch: {epoch:02d}, Iteration: {i}, Loss: {loss:.4f}")
nb = i + 1.0
if rank == 0:
print(f"Avg Training Iteration Time: "
f"{(time.time() - start) / (nb - warmup_steps):.4f} s/iter")
with torch.no_grad():
total_correct = total_examples = 0
for i, batch in enumerate(val_loader):
if i >= eval_steps:
break
batch = batch.to(rank)
batch_size = batch.batch_size
batch.y = batch.y.to(torch.long)
out = model(batch.x, batch.edge_index)[:batch_size]
pred = out.argmax(dim=-1)
y = batch.y[:batch_size].view(-1).to(torch.long)
total_correct += int((pred == y).sum())
total_examples += y.size(0)
acc_val = total_correct / total_examples
if rank == 0:
print(f"Validation Accuracy: {acc_val * 100:.2f}%", )
torch.cuda.synchronize()
with torch.no_grad():
total_correct = total_examples = 0
for i, batch in enumerate(test_loader):
batch = batch.to(rank)
batch_size = batch.batch_size
batch.y = batch.y.to(torch.long)
out = model(batch.x, batch.edge_index)[:batch_size]
pred = out.argmax(dim=-1)
y = batch.y[:batch_size].view(-1).to(torch.long)
total_correct += int((pred == y).sum())
total_examples += y.size(0)
acc_test = total_correct / total_examples
if rank == 0:
print(f"Test Accuracy: {acc_test * 100:.2f}%", )
if rank == 0:
total_time = time.perf_counter() - wall_clock_start
print(f"Total Training Runtime: {total_time - prep_time}s")
print(f"Total Program Runtime: {total_time}s")
from cugraph.gnn import cugraph_comms_shutdown
cugraph_comms_shutdown()
dist.destroy_process_group()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--fan_out', type=int, default=30)
parser.add_argument('--dataset', type=str, default='ogbn-papers100M')
parser.add_argument('--root', type=str, default='dataset')
parser.add_argument('--tempdir_root', type=str, default=None)
parser.add_argument(
'--n_devices',
type=int,
default=-1,
help='How many GPUs to use. Defaults to all available GPUs',
)
args = parser.parse_args()
wall_clock_start = time.perf_counter()
from rmm.allocators.torch import rmm_torch_allocator
torch.cuda.memory.change_current_allocator(rmm_torch_allocator)
dataset = PygNodePropPredDataset(name=args.dataset, root=args.root)
split_idx = dataset.get_idx_split()
data = dataset[0]
data.y = data.y.reshape(-1)
model = torch_geometric.nn.models.GCN(
dataset.num_features,
args.hidden_channels,
args.num_layers,
dataset.num_classes,
)
if args.n_devices < 1:
world_size = torch.cuda.device_count()
else:
world_size = args.n_devices
print(f"Using {world_size} GPUs...")
# Create the uid needed for cuGraph comms
from cugraph.gnn import cugraph_comms_create_unique_id
cugraph_id = cugraph_comms_create_unique_id()
with tempfile.TemporaryDirectory(dir=args.tempdir_root) as tempdir:
mp.spawn(
run,
args=(data, world_size, cugraph_id, model, args.epochs,
args.batch_size, args.fan_out, split_idx,
dataset.num_classes, wall_clock_start, tempdir,
args.num_layers),
nprocs=world_size,
join=True,
)
|